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Variational Bayesian inversion for microwave breast imaging
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Microwave imaging is considered as a nonlinear inverse scattering problem and tackled in a Bayesian
estimation framework. The object under test (a breast affected by a tumor) is assumed to be composed of
compact regions made of a restricted number of different homogeneous materials. This a priori knowledge
is defined by a Gauss-Markov-Potts distribution. First, we express the joint posterior of all the unknowns;
then, we present in detail the variational Bayesian approximation used to compute the estimators and
reconstruct both permittivity and conductivity maps. This approximation consists of the best separable
probability law that approximates the true posterior distribution in the Kullback-Leibler sense. This
leads to an implicit parametric optimization scheme which is solved iteratively. Some preliminary results,
obtained by applying the proposed method to synthetic data, are presented and compared with those
obtained by means of the classical contrast source inversion method.

Keywords: inverse scattering, microwave imaging, breast cancer detection, Gauss-Markov-Potts prior,
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1. INTRODUCTION

In the last few decades, microwave imaging has attracted an increasing interest in medical applica-
tions such as breast cancer detection [10, 12]. In addition to the non-ionizing nature of microwaves,
one of the motivation for developing a microwave imaging technique for detecting breast cancer is
the significant contrast in the dielectric properties at microwave frequencies of normal and malig-
nant breast tissues [15]. All this makes microwave imaging a better alternative, in terms of cost and
common, than X-ray mammography which is the most safety breast cancer detection technique.
Hence, measurements of the scattered fields resulting from the interaction between a known

interrogating wave in the microwave frequency range and the breast can be used to find a con-
trast function that depends on the dielectric properties (permittivity and conductivity) of the
breast. This leads to a non linear ill-posed inverse scattering problem solved herein in a varia-
tional Bayesian framework. The associated forward problem consists of modeling the wave-breast
interaction through a domain integral representation of the electric field in a 2D configuration of
a transverse magnetic polarization case.
The Bayesian framework [14] allows us to take easily into account prior information on the sought

solution. Such prior information could consist of sparsity that represents, in the spectral domain,
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the spatial correlation exhibited by constitutive properties of breast tissues as considered in [8]
where microwave breast imaging is tackled by means of Bayesian inference applied to compressive
sensing and efficient solutions are sought by means of the relevance vector machine technique [24].
Herein, we would like to call attention to the fact that the breast is composed of a finite number
of different tissues distributed in compact regions. Indeed, it has been shown that although they
are very heterogeneous and show large variability in their dielectric properties between individuals,
the breast tissues can be divided into four different groups, three for healthy tissues [16], which
are then classified with respect to their fat content and one for tissues with the tumors [18]. Then,
in addition to study map of the contrast function, we would like to obtain a segmentation of the
breast that differentiates these tissue groups. The sought image is composed of a finite number of
homogeneous area and this a priori is introduced via a Gauss-Markov field with hidden Potts label
fields [21].
Afterwards, the variational Bayesian approximation (VBA) [19] is applied to obtain an estimator

of the unknowns. It can be noted that a semi-supervised context is considered herein as the number
of different tissues is assumed to be known, while all the unknowns and other hyper-parameters of
the model are estimated simultaneously through a joint posterior law. The purpose of VBA is to
approximate the latter by a free-form distribution that minimizes the Kullback-Leibler divergence.
This distribution is chosen as a separable law. Then, thanks to the latter method, the initial inverse
problem turns into an optimization problem and the analytical approximation of the posterior is
obtained. This method has already been applied to microwave imaging and optical diffraction
tomography and the results have shown its improved performances with respect to computation
time and simplicity, compared with stochastic sampling methods such as Markov chain Monte-Carlo
(MCMC) [2, 3].
The main contribution of this work is the application of VBA to breast imaging where the

sought contrast is complex valued, contrary to the case presented in [2], and both permittivity and
conductivity maps have to be retrieved. Herein, we discuss the results obtained by means of this
approach from synthetic data generated in different configurations involving two different numerical
breast phantoms: a simple phantom made of two homogeneous media and a more sophisticated one
made from a MRI scan of a real breast. Next, we present some results and compare with those
obtained by means of the deterministic contrast source inversion method (CSI, [25, 26]).
This paper is organized as follows: Sec. 2 is about experimental configuration and forward

modeling. The VBA approach and Bayesian computations are discussed in Sec. 3. In Sec. 4, the
method is applied to synthetic data and compared to CSI. Finally, some conclusions and discussion
are given in Sec. 5.

2. FORWARD MODELING

2.1. Experimental configuration

We consider a 2D configuration in a transverse magnetic polarization case where the object under
test is supposed to be cylindrical, with infinite extension along the z axis and illuminated by a line
source whose location can be varied and that operates at several discrete frequencies. This source
generates an incident electric field Einc polarized along the z axis with an exp(−iωt) implicit time
dependence and illuminates the breast from 64 various angular positions uniformly distributed
around a 7.5-cm-radius circle centered at the origin and at 6 different frequency bands in the
range 0.5–3 GHz. For each frequency and illumination angle, 64 measurements of the scattered
field are performed at angular positions uniformly distributed around the same circle. The breast
is immersed in a background medium (domain D1) and is assumed to be contained in the test
domain (D). The different media are characterized by their propagation constant k(r) such that
k2(r) = ω2µ0ǫ0ǫr(r) + iωµ0σ(r), where ω is the angular frequency, ǫ0 and µ0 are the permittivity
and the permeability of the free space, respectively, r ∈ D is an observation point and ǫr(r) and
σ(r) are respectively the relative permittivity and conductivity of the medium.
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Two breast phantoms are considered (see Fig. 1). Both of them are assumed to be affected with
a tumor (domain D3) with a 2-cm-diameter circular cross-section and with electromagnetic param-
eters ǫr = 55.3 and σ = 1.57 Sm−1. Phantom 1 is rather simple and it consists of a homogeneous
breast (domain D2), with a 9.6-cm-diameter circular cross-section and relative dielectric permittiv-
ity and conductivity respectively equal to ǫr = 6.12 and σ = 0.11 Sm−1, immersed in a background
medium of electromagnetic parameters ǫr = 10 and σ = 0.5 Sm−1. Phantom 2 is more sophis-
ticated. It is made using a MRI scan of a real breast [27]. Hence, the breast is also assumed to
be of circular cross-section with a diameter of 9.6 cm but it is now made of a very heterogeneous
medium with parameters varying in the ranges 2.46 ≤ ǫr ≤ 60.6 and 0.01 Sm−1 ≤ σ ≤ 2.28 Sm−1,
surrounded by a 2-mm-thick skin with electromagnetic parameters ǫr = 35.7 and σ = 0.32 Sm−1

and immersed in a background medium whose relative dielectric permittivity and conductivity are
respectively equal to ǫr = 35 and σ = 0.5 Sm−1.

Fig. 1. Measurement configuration and breast phantoms (left: phantom 1, right: phantom 2).

2.2. Problem formulation

Modeling is based on a domain integral representations of the electric field obtained by applying
Green’s theorem to the Helmholtz wave equations satisfied by the fields and by accounting for con-
tinuity and radiation conditions [5]. The forward model consists of two coupled integral equations.
The first one, denoted as the observation equation, is a Fredholm first kind integral equation that
relates the scattered field observed on a measurement domain S to Huygens-type sources induced
within the object by the incident wave, whereas the second one, denoted as the coupling (or state)
equation, relates the total field of the object to the induced sources [3, 7]. The forward problem is
solved from discrete counterparts of these integral equations obtained by the method of moments
with pulse basis and point matching [11], which results in partitioning the test domain D into
ND elementary pixels small enough to permit, considering both the field and the contrast as con-
stant over each of them. Let us now consider a contrast function χ, defined in D and null outside
the object such that χ(r) = (k2(r) − k21)/k

2
0 , where k0 and k1 are the propagation constants of

free space and background medium, respectively. The Huygens-type sources w(r) are then defined
as w(r) = χ(r)E(r), where E(r) is the total field of the object. The above-mentioned discrete
counterparts then read:

y = Gow + ǫ, (1)

w =XEinc +XGc w + ξ, (2)
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where y is the vector containing the values of the scattered field y(r) at the measurement points r
(r ∈ S), E, χ and w are the vectors that contain the values of E(r′), χ(r′) and w(r′) at the centers
r′ of the pixels (r′ ∈ D),X is a matrix such thatX = diag(χ), Go and Gc are huge matrices whose
elements result from the integration of the free space Green’s function over the elementary pixels [3]
and ǫ and ξ are two vectors which account for model and measurement errors that are supposed
to be centered, white and satisfying Gaussian laws (i.e., ǫ ∼ N (0, vǫI) and ξ ∼ N (0, vξI)).

2.3. Validation of the forward model

First, in the forward problem we solve Eq. (2) for the induced sources w, knowing the contrast χ
and the incident field Einc, and then we solve Eq. (1) for the scattered field y. At this point it can
be noted that this direct model is used in the inversion. However, in order to avoid committing
an inverse crime in the sense of [6] which would consist of testing the inversion algorithm on data
obtained by means of a model closely related to that used in inversion, the synthetic data of the
inverse problem are computed in a different way, by benefiting from the circular symmetry that
exists in the absence of inhomogeneities. Hence, the data are computed by means of a model (the
data model) where discretization applies only to the domain D3 occupied by the tumor for both
phantoms and to a part of the domain D2 for phantom 2, whereas the breast, the skin and the
background medium are considered as cylindrically stratified embedding medium and the Green’s
function is modified consequently [23]. Figure 2 displays the scattered fields obtained by means of
the data model with phantom 1 for the illumination angle of 45◦ and at two operating frequencies

Fig. 2. Amplitude (left) and phase (right) of the scattered fields computed by means of the data model (black
line) and by means of the forward model used for inversion (red line) at 1.5 GHz (top) and 3 GHz (bottom).
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(1.5 GHz and 3 GHz), compared with that obtained by means of the forward model used for
inversion where the test domain D is a square with 12.16 cm side partitioned into 64 × 64 square
pixels each with a side δ = 1.9 mm. It can be observed that the results fit relatively well.

3. BAYESIAN INVERSION APPROACH

3.1. Hierarchical prior model

The inverse problem consists of retrieving the unknown contrast χ, or more precisely the relative
permittivity ǫr and the conductivity σ from the scattered field y, given the incident field E

inc. It
is noted that the induced sources w being also unknown, must be obtained at the same time as χ.
Hence, assuming that their relation to the contrast is given by the state Eq. (2), we define their
conditional a priori probability law as:

p(w|χ, vξ) ∝ exp

{
− 1

2vξ
||w −XEinc −XGcw||2D

}
. (3)

In the same way, the observation Eq. (1) yields the conditional a priori probability law for the
scattered field:

p(y|w, vǫ) ∝ exp

{
− 1

2vǫ
||y −Gow||2S

}
. (4)

Now, let us introduce a priori information for the sought solution required in order to counteract
the ill-posedness of the inverse problem. It consists of the fact that the sought object is composed of
a restricted number K of homogeneous materials distributed in compact regions. The compactness
of different regions can be accounted for by means of a hidden variable (or classification label)
z(r) associated with each pixel r, which represents a segmentation of the unknown object. The
classification label z(r) of a pixel r is related, in a probabilistic way, to that of its neighbors by
means of a Potts-Markov model for z:

p(z|λ) = 1

T (λ)
exp



λ

∑

r∈D

∑

r
′∈Vr

δ
(
z(r)− z(r′)

)


 , (5)

where λ is the Potts parameter that determines the correlation between neighbors, T (λ) is a nor-
malization factor and Vr is a neighborhood of r, herein made of the four nearest pixels. It can be
noted that the value of λ determines the a priori behavior of the hidden field and hence the size of
the homogeneous area in the final image; the larger λ is, the longer the area is. Herein, it is set to
λ = 1, i.e., to a value slightly higher than the critical value λc = log(1 +

√
K), which yields a good

tradeoff for the degree of correlation [4]. In this way the number of homogeneous areas remains
reasonably low while small details of high contrast such as those that appear in phantom 2, are
relatively well preserved.
The fact that the breast is composed of a finite number of different tissues can then be expressed

by the following conditional distribution:

p(χ(r)|z(r) = k) = N (mk, vk), k = 1, . . . ,K, (6)

which means that all the pixels with the same label (z(r) = k, k ∈ {1, ...,K}) correspond to the
same tissue whose contrast satisfies the Gaussian law with a mean value mk and a variance vk.
Hence, the contrast is sought as a Gaussian mixture where each Gaussian law represents a given
tissue and its values belong to a continuous set. Let us emphasize the fact that two a priori models
can now be defined, depending on the way in which the means mk and variances vk are estimated.
With the first model, denoted as independent Gaussian mixture (IGM), the interaction between
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pixels is accounted for only through the hidden field z(r) while the contrasts of the pixels of a
given region are conditionally independent, and the mean mk and variance vk depend only on the
class k. On the contrary, the second model, denoted as Gauss-Markov mixture (GMM), reinforces
the correlation between pixels of the same class through a Markov field, while keeping independent
the pixels of the other classes in order to preserve the contours. This is done by setting the a priori
mean of the contrast of a pixel to the mean of the contrast of its nearest neighbors if they are in
the same class, or to the mean of the class otherwise. The latter model is more suitable when the
sought object is very heterogeneous.
Now we have all the components necessary to find the expression of the joint posterior law

of all the unknowns (χ, w, z, ψ), where ψ is the set of hyper-parameters of the model (ψ =
{m,v, vǫ, vξ}). This posterior law is obtained by applying the Bayes formula:

p(χ,w,z,ψ|y) ∝ p(y|w, vǫ) p(w|χ, vξ) p(χ|z,m,v)p(z|λ)

× p(mk|µ0, τ0) p(vk|η0, φ0) p(vǫ|ηǫ, φǫ) p(vξ |ηξ, φξ). (7)

Expressions of p(y|w, vǫ), p(w|χ, vξ), p (χ|z,m,v) and p(z|λ) are derived respectively from
Eqs. (3)–(6). As for the hyper-parameters, they are assumed to satisfy conjugate prior laws so
that the posterior laws stay in the same family, which greatly simplifies the computations. Hence,
Gaussian (N (µ, τ)) and inverse-gamma (IG(η, φ)) distributions are assigned to means and vari-
ances, respectively:

p(mk|µ0, τ0) = N (µ0, τ0), p(vk|η0, φ0) = IG(η0, φ0),

p(vǫ|ηǫ, φǫ) = IG(ηǫ, φǫ), p(vξ|ηξ, φξ) = IG(ηξ, φξ),
(8)

where µ0, τ0, η0, φ0, ηǫ, φǫ, ηξ and φξ are meta-hyper-parameters appropriately set to have non-
informative priors, i.e. flat prior distributions.

3.2. The variational Bayesian approach

All the right-hand side expressions of Eq. (8) are known, which allows us to obtain the expression
the left-hand side, i.e., the joint posterior law of all the unknowns, up to a normalizing constant.
However, the complexity of its expression makes it very hard to obtain it in a tractable form for
conventional estimators, such as the maximum a posteriori (MAP) or the posterior mean (PM),
and thus an approximation is required. Hence, we opt for the analytical approximation based on the
variational Bayesian approach (VBA, [22]) that aims to approximate the true posterior distribution
(8) by a free-form separable law q(u) =

∏
j q(xj), with u = {χ,w,z,ψ} that minimizes the

Kullback-Leibler divergence KL(q||p) =
∫

q ln(q/p) [13]. We define the separable law as

q(u) = q(vǫ)q(vξ)

ND∏

i=1

q(χi)q(wi)q(zi)

K∏

k=1

q(mk)q(vk). (9)

Then, we look for the optimal form of q that minimizes the Kullback divergence. This leads to the
following parametric distributions:

q(w) = N (m̃w, Ṽw), q(χ) = N (m̃χ, Ṽχ), q(z) =
∏

r

ζ̃k(r),

q(mk) = N (µ̃k, τ̃k), q(vk) = IG(η̃k, φ̃k), q(vǫ) = IG(η̃ǫ, φ̃ǫ), q(vξ) = IG(η̃ξ, φ̃ξ),

(10)

where the tilded variables are mutually dependent and are computed in an iterative way [2] and,

in the approximating law
∏
r

ζ̃k(r), the probability of the hidden field of a pixel is computed from

the probabilities of its neighbors at the previous iteration step.
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3.3. Initialization and convergence of the algorithm

The initial number of classes K used for segmentation is set to K = 3 for phantom 1 and K = 4 for
phantom 2, whereas the initial values χ(0) and w(0) are obtained by backpropagating the scattered
field data from the measurement circle S onto the test domain D [25]. From χ(0) and w(0), the
classification z and the hyper-parameters (means and variances) can be initialized by means of
K-means clustering [20]. Here, given the fact that the contrast is complex valued, first the real part
is segmented and the same segmentation is then used to initialize the imaginary part.
Concerning the convergence, the shaping parameters of Eq. (10) are iterated until convergence

is reached. The latter is estimated empirically by studying to the development of contrast and
hyper-parameters in the course of iterations (see Fig. 3).

Fig. 3. The evolution of the observation vǫ (left) and coupling vξ (right) error variances as functions of the
iteration step for phantom 1.

Finally, the efficiency of the various algorithms is estimated by means of the relative error (Err)
or the peak signal to noise ratio (PSNR):

Err =

ND∑
i=1

(γ(ri)− γa(ri))
2

ND∑
i=1

(γa(ri))
2

, PSNR (dB) = 10 log10




ND |χmax|2
ND∑
i=1
|χ(ri)− χa(ri)|2


, (11)

where γ = ǫr or σ, subscript a stands for the actual value and χmax is the maximal value of the
contrast modulus.

4. RESULTS

Figure 4 displays the results obtained for both permittivity and conductivity of phantom 1 after 500
iterations, in a test domain D partitioned into 64×64 square pixels, each with a side of 1.9 mm, while
Fig. 5 displays those obtained for phantom 2 after 2000 iterations, in the test domain D partitioned
into 120×120 square pixels, each with a side of 1 mm. These results are obtained by simultaneously
processing the data corresponding to all frequencies and all directions of illumination. They are
compared with those obtained by means of contrast source inversion (CSI, [25, 26]) under the
same conditions and after the same number of iterations. The latter is an iterative deterministic
method which consists of minimizing a cost functional, that accounts for both observation and
coupling equations, by alternately updating w and χ with a gradient-based method. In general,
VBA succeeds in retrieving homogeneous regions that correspond to the background, the breast
and the tumor and the results are more accurate than those obtained by means of CSI, particularly
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Fig. 4. Maps of permittivity (top row) and conductivity (bottom row) of phantom 1 reconstructed by means
of CSI (2nd column) and VBA with the IGM (3rd column) and GMM (4th column) a priori models compared

with the actual object (1st column).

Fig. 5. Maps of permittivity (top row) and conductivity (bottom row) of phantom 2 reconstructed by means
of CSI (2nd column) and VBA with the IGM (3rd column) and GMM (4th column) a priori models compared

with the actual object (1st column).

concerning the conductivity. It can be noted that, for both phantoms, the GMM a priori model
performs better in retrieving the tumor than the IGM one, which is, here again, more apparent
in the conductivity maps than in the permittivity ones. This is confirmed in Table 1 that displays
the PSNRs obtained for both phantoms with each of the methods. However, none of the a priori
models succeeds in retrieving the glandular areas present in phantom 2, which is not surprising as
these area do not correspond to compact homogeneous regions.
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Table 1. PSNRs (dB) obtained for both phantoms
with CSI, VBA-IGM and VBA-GMM.

Phantom CSI
VBA

IGM GMM

1 49.14 50.67 50.80

2 52.06 52.91 54.04

Finally, in addition to its better performances, the VBA compared with CSI yields not only an
image of the sought object, but also a segmentation of the latter and an estimate of the various
hyper-parameters as illustrated in Fig. 6.

Fig. 6. Hidden fields (left) and means mk of the real (right) and imaginary (middle) parts of the contrast
corresponding to different classes for phantoms 1 (top row) and 2 (bottom row).

As underlined previously, a model error is systematically introduced when computing the syn-
thetic data of the inverse problem. However, this does not account for measurement noise that
would be inevitably present in real experimental situations. In order to test the sensitivity of VBA
with respect to the latter, the data sets corresponding to both phantoms have been corrupted by
additive white Gaussian noises, with signal to noise ratios (SNRs) equal to 5 dB, 10 dB and 20 dB,
defined with respect to the scattered fields. It can be observed that the VBA is a very robust
method that still succeeds in identifying the area corresponding to the tumor with SNR as low as
5 dB (see Figs. 7 and 8). Table 2 summarizes relative errors obtained for the relative permittivity
and conductivity of both phantoms with various SNRs.
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Fig. 7. Permittivity (top row) and conductivity (bottom row) maps of phantom 1 obtained from noisy data.

Fig. 8. Permittivity (top row) and conductivity (bottom row) maps of phantom 2 obtained from noisy data.

Table 2. Relative errors (Err) obtained for both phantoms with various SNRs.

SNR [dB]
Phantom 1 Phantom 2

ǫr σ ǫr σ

5 0.2× 10−2 7.2× 10−2 2.5× 10−1 7.8× 10−2

10 0.8× 10−5 0.7× 10−2 2.4× 10−3 0.9× 10−2

20 2.6× 10−9 0.9× 10−4 3.4× 10−4 1.5× 10−4
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5. CONCLUSION

In this paper, we consider microwave imaging as an inverse obstacle scattering problem which
is known to be ill-posed. This means that a regularization of the problem is required prior to
its resolution, and this regularization generally consists of introducing a priori information for the
sought solution. Herein, the important information about the object under test is that it is composed
of a restricted number of homogeneous materials distributed in compact regions. This is tackled in a
Bayesian inversion framework via a Gauss-Markov-Potts model. Application to synthetic data shows
a good improvement in the reconstruction quality with respect to a CSI deterministic approach.
Moreover, compared with the latter, the Bayesian inversion has the advantage of providing not
only the map of the contrast of the sought object, but also its segmentation into homogeneous
regions and contrast parameters (means and variances) in each of the latter, in addition to the
variances of the measurement and model errors and different hyper-parameters involved in the
model. However, several points still need to be investigated. Particularly, concerning the convergence
speed, a gradient-like variational Bayesian method [9] needs further research. This technique had
already shown its effectiveness compared with the classical VBA in other applications. Another
point under investigation is concerning the number of classes; herein, it is considered as a priori
known, which is not necessarily true. If the latter is unknown, it can be determined by means of
a non-parametric approach or it can be initialized at high level. In the latter case, it has been
numerically shown [1] that it should converge to the optimal number of classes in one of two
possible ways: i) if the number of pixels that belong to a given class decreases during iterations and
reaches a low threshold value, then this class should disappear and ii) if the means of two different
classes are close enough to one another, then these classes end up merging. Finally, concerning the
physics of the application, it has been observed in this paper that the dielectric properties of breast
tissues do not change versus frequency, however they are very dispersive and it has been shown that
the frequency behavior of the properties of the various tissue groups can be described by one-pole
Debye models [17]. Hence, the next step is to account for the tissue frequency dispersivity by looking
for the invariant parameters of the Debye models instead of the permittivity and conductivity of
various tissue groups.
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