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Recently, Bevilacqua, Galeão and co-workers have developed a new analytical formulation for the simu-
lation of diffusion with retention phenomena. This new formulation aims at the reduction of all diffusion
processes with retention to a unifying model that can adequately simulate the retention effect. This model
may have relevant applications in a number of different areas such as population spreading with partial
hold up of the population to guarantee territorial domain chemical reactions inducing adsorption pro-
cesses and multiphase flow through porous media. In this new formulation a discrete approach is firstly
formulated taking into account a control parameter which represents the fraction of particles that are able
to diffuse. The resulting governing equation for the modelling of diffusion with retention in a continuum
medium requires a fourth-order differential term. Specific experimental techniques, together with an ap-
propriate inverse analysis, need to be determined to characterize complementary parameters. The present
work investigates an inverse problem which does not allow for simultaneous estimation of all model param-
eter. In addition a two-step characterization procedure proposed: in the first step the diffusion coefficient
is estimated and in the second one the complementary parameters are estimated. In this paper, it is as-
sumed that the first step is already completed and the diffusion coefficient is known with a certain degree
of reliability. Therefore, this work is aimed at investigating the confidence intervals of the complementary
parameters estimates considering both the uncertainties due to measurement errors in the experimental
data and due to the uncertainty propagation of the estimated value of the diffusion coefficient. The inverse
problem solution is carried out through the maximum likelihood approach, with the minimization problem
solved with the Levenberg-Marquardt method, and the estimation of the confidence intervals is carried
out through the Monte Carlo analysis.
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1. INTRODUCTION

Spreading of particles or microorganisms immersed in a given medium or deployed on a given sub-
stratum is frequently modeled as a diffusion process, given by the well-known diffusion equation
derived from Fick’s second law. This model represents quite satisfactorily the behavior of several
physical phenomena related to dispersion processes, but for some cases this approach fails to repre-
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sent the real physical behavior. For instance, population spreading or dispersing particles may be
partially and temporarily blocked when immersed in some particular media, an invading species may
hold a fraction of the total population stationary on the conquered territory in order to guarantee
territorial domain and chemical reactions may induce absorption processes for the solutes diffusion
in liquid solvents in the presence of absorbent material [4]. Among other physicochemical phenom-
ena that are in need of the analytical formulation improvement due to side effects not accounted
for in the classical diffusion theory, we may cite the flows through porous media [11], and diffusion
processes for some dispersing substances immersed in particular supporting media [1, 5, 6, 8, 14]. In
most cases appearing in the literature addressing this issue, the well-known second-order parabolic
equation is assumed as the basic governing equation of the dispersion process, but the anomalous
diffusion effect is modeled with an introduction of fractional derivatives [13], or imposing an arbi-
trary variation of the diffusion coefficient with time or concentration [10, 18]. Nevertheless, in order
to overcome the anomalous diffusion issue by imposing an artificial dependence of the diffusion
coefficient on the particle concentration or introducing extra differential terms while keeping the
second-order rank of the governing equation disguises the real physical phenomenon occurring in
the process. In 2011, Bevilacqua, Galeão and co-workers derived a new analytical formulation for
the simulation of anomalous diffusion phenomena [2], explicitly taking into account the retention
effect in the dispersion process, aiming at the reduction of all diffusion processes with retention to
a unifying phenomenon. The new parameters introduced, besides the diffusion coefficient, charac-
terize the blocking process, and specific experimental techniques, together with an inverse analysis,
need to be settled to determine these complementary parameters. The present work investigates an
anomalous diffusion inverse problem which does not allow for simultaneous estimation of all model
parameters [15]. In addition a two-step characterization procedure is proposed. It is considered pos-
sible to impose a case in which the blocking process does not take place, for instance as it occurs
in the flow of ferrofluid in micro-channels [7]. In this example, the problem may or may not present
an anomalous diffusion effect, depending on the presence of a magnetic field. Therefore, in the first
step, assuming that all particles are able to diffuse, the diffusion coefficient of the model may be
estimated. Then, the second step may be carried out in a situation in which anomalous diffusion
occurs for the given problem, with the diffusion coefficient already characterized, in order to esti-
mate the complementary anomalous diffusion parameters. In this paper, it is assumed that the first
step of the two-step procedure is already completed and the diffusion coefficient is known with a
certain degree of reliability. Therefore, this work is aimed at investigating the confidence intervals of
the complementary parameters estimates, considering the uncertainties due to measurement errors
in the experimental data and due to the uncertainty propagation of the considered value of the
diffusion coefficient. The inverse problem solution is carried out through the maximum likelihood
approach, with the minimization problem solved with the Levenberg-Marquardt method [12], and
the estimation of the confidence intervals is carried out through the Monte Carlo analysis [9].

2. PROBLEM FORMULATION AND SOLUTION METHODOLOGY

Let us consider the process schematically represented in Fig. 1. The redistribution of the contents of
each cell indicates that the fraction of the contents αpn is retained in the n

th cell and the exceeding
volume is evenly transferred to the neighboring cells, that is, 0.5βpn, to the (n − 1)th cell on the
left and to the (n+1)th cell on the right, at each time step, where β = 1−α. This means that the
dispersion runs slower than for the classical diffusion problem. Note that if β = 1, the problem is
reduced to the classical Gaussian distribution.
This process can be written as the following algebraic expressions:

ptn = (1− β)pt−1n +
1

2
βpt−1n−1 +

1

2
βpt−1n+1, (1)1

pt+1
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1

2
βptn+1. (1)2
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Fig. 1. Schematic representation of the symmetric distribution with retention α = (β − 1).

Manipulating Eqs. (1)1 and (1)2 in order to obtain finite difference terms yields:
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where T0, L0 and L1 are integration parameters. Calling K2 = L2
0/2T0 and K4 = L4

1/4T0, both
considered constant in this work, and using the limit as ∆x→ 0 and ∆t→ 0, we have:

∂p (x, t)

∂t
= βK2

∂2p (x, t)

∂x2
− β (1− β)K4

∂4p (x, t)

∂x4
. (3)1

The fourth-order differential term with a negative sign introduces the anomalous diffusion effect,
which appears naturally without any artificial assumption, as an immediate consequence of the
temporary retention imposed by the redistribution law. Further discussion on the model derivation
can be found in [2].
As a test case for the present work, we consider the governing equation given in Eq. (3)1 valid

for 0 < x < 1 and t > 0, with the following boundary and initial conditions:

p(0, t) = 1, p(1, t) = 1,
∂p(x, t)

∂x

∣

∣

∣

∣

x=0

= 0,
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∣
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x=1

= 0, t > 0, (3)2

p(x, 0) = f(x) = 2 sin100(πx) + 1, 0 ≤ x ≤ 1. (3)3

The problem given in Eqs. (3) is solved in this work with NDSolve routine of the Mathematica
platform, under automatic absolute and relative error control. When it comes to inverse problem
solution by observing the problem defined in Eqs. (3), it is evident that the three parameters appear-
ing in the model cannot be estimated simultaneously since in Eq. (3)1 there are three parameters
defining two coefficients, i.e., there are infinite sets of values for the parameters Z = {β,K2,K4}
that lead exactly to the same mathematical formulation, yielding non-uniqueness of the inverse
problem solution, which was also illustrated by means of a sensitivity analysis in [15]. Since the
most interesting aspect of the previously described problem would be the identification of the three
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parameters appearing in the model, due to their direct physical interpretation [2], we choose not to
rewrite the problem in terms of only two coefficients which would multiply the second- and fourth-
order differential terms. Next, we shall consider that the parameter K2 can be obtained through an
independent experiment, for example, by means of an inverse problem in a physical situation where
the blocking process that characterizes the anomalous diffusion phenomenon does not occur, i.e.,
β = 1. Then, the main goal becomes to estimate β and K4, and to provide an accurate uncertainty
analysis due to errors in the experimental data and in the considered value of K2. The inverse
problem formulation and solution are addressed in the following sections.

3. INVERSE PROBLEM FORMULATION AND SOLUTION

In order to investigate the inverse problem solution concerning the estimation of the three model
parameters, Z = {β,K2,K4}, we consider a vector of experimental data Y, simulated with the
solution of Eq. (3), and the addition of noise simulated from a normal distribution with known
variance:

Yi = pi(Zexact) + ǫi, ǫ ∼ N(0, σ2
e ). (4)

In this case, the maximum likelihood approach leads to the ordinary least squares norm as objective
function, given by the sum of the squared residues between the experimental data Yi and the
predicted values from the solution of Eq. (3), pi(Z):

S(Z) =

Nd
∑

i=1

(pi(Z)− Yi)
2. (5)

So, the vector Z that minimizes S yields the maximum likelihood estimates for the model parameters
under investigation. In order to minimize the previously presented objective function, we use in
this work the Levenberg-Marquardt method [12]. Starting with an initial guess Z0, an iterative
procedure is constructed, in which new estimates are obtained with

Zn+1 = Zn +∆Zn, n = 0, 1, 2, ..., (6)

being the correction ∆Zn calculated from

∆Zn = −
[

J
T
nJn + λnI

]

−1
J
T
nRn, (7)

where λ is a damping parameter, I is the identity matrix and the elements of the sensitivity matrix
J, known as the sensitivity coefficients, are

Jij =
∂pi
∂Zj

, i = 1, 2, ..., Nd , j = 1, 2, ..., Np, (8)

where Np is the number of parameters being estimated, i.e., the dimension of the vector Z and R
is the vector of residues, whose elements are given by

Ri = pi(Z)− Yi, i = 1, 2, ..., Nd . (9)

The iterative procedure of sequentially calculating ∆Zn and Zn+1 with Eqs. (7) and (6), respec-
tively, is continued until the convergence criterion

|∆Zn,j| < ǫtol, for j = 1, 2, ..., Np (10)

is satisfied, where ǫtol is a prescribed tolerance. The damping factor λn is varied during the iterative
procedure, such that when convergence is achieved its value is close to zero.
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The derivatives that must be calculated in order to obtain the sensitivity coefficients in Eq. (8)
can be computed with a finite difference scheme. Nevertheless, the finite difference approximations
must be employed with care because of the choice of the increment. If a large value is used, it is
possible that the approximations will not be sufficiently accurate. On the other hand, if very small
values are used for the increment, large numerical errors can occur due to the difference of numbers
very close to each other, motivating the use of more involved techniques for the computation of
the sensitivity coefficients, such as the complex-step method [17] or the derivation and solution of
the sensitivity coefficient equations [3]. The sensitivity equations have been derived in [15], yielding
for Xβ
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and for XK4
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XZj
(x, t) = ∂p(x, t)/∂Zj . Equations (11)–(13) can be numerically solved for the sensitivity coef-

ficients Xβ(x, t), XK2
(x, t) and XK4

(x, t), respectively, after the computation of p(x, t), with the
same methodology that was employed in the solution of the direct problem, i.e., using NDSolve
routine of the Mathematica platform, under automatic absolute and relative error control. After
this, the coefficients of the matrix J, Eq. (8), can be readily computed.
It should also be highlighted that the sensitivity analysis plays a major role in several aspects

related to formulation and solution of inverse problems [3]. In order to obtain good estimates, within
reasonable confidence intervals, it is required for the sensitivity coefficients to be relatively high and,
when two or more unknowns are simultaneously estimated, their sensitivity coefficients must be lin-
early independent, what graphically means that they should not present the same slope in absolute
value. Otherwise

∣

∣J
T
J
∣

∣ ≈ 0 and the problem is ill-conditioned. Since the problem investigated in
this work involves parameters with different orders of magnitude, the scaled sensitivity coefficients
are employed in order to allow for more evident comparisons between the sensitivity coefficients
with respect to different parameters and identification of linear dependence. The scaled sensitivity
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coefficients are obtained by multiplying the sensitivity coefficient by an estimate or reference value

for the value of the concerned parameter, i.e. XZi
= Zi

∂p

∂Zi

. Therefore, we have:

Xβ(x, t) = β
∂p(x, t)

∂β
, XK2

(x, t) = K2

∂p(x, t)

∂K2

, XK4
(x, t) = K4
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∂K4

. (14)

In this work, it is assumed that the parameter K2 has already been estimated through an inde-
pendent previous procedure, for instance when conducting an experiment in which the blocking
process is known not to occur. Therefore, assuming prior information on the parameter K2 is avail-
able (mean and confidence interval), the goal is to obtain estimates for the parameters β and K4

and assess their joint confidence region as a result of uncertainty in the assumed value of K2 and
measurement errors. In order to calculate the confidence intervals for the parameters β and K4,
the inverse problem of estimating β and K4 is solved through the minimization of the maximum
likelihood objective function, Eq. (5), assuming that the parameter K2 is known. In order to cal-
culate the confidence of the estimated parameters, and taking into account the uncertainty in the
given value of K2, the Monte Carlo error propagation analysis is introduced [9]. The idea is to
simulate M virtual noisy experiments, employing different values of K2 (randomly simulated from
the a priori known probability distribution), and different simulated experimental data, and then
examine the statistics of the corresponding estimated parameters. This procedure can be seen while
solving the inverse problem several times, and for every time it is solved all inputs (experimental
data and K2 in this case) are varied randomly within their uncertainty limits, obeying their known
statistical distributions, independent of the others. After a sufficiently large number of independent
calculations are performed, the distribution of the computed results (the estimated values of β and
K4 in this case) nearly describes the distribution of all possible results from the combination of the
input data.

4. RESULTS AND DISCUSSION

In the following consider the case with β = 0.2,K2 = 10−3 andK4 = 10−5 in Eq. (3)1. This test case
is investigated in [15] and it is shown that for t > 95 the sensitivity coefficients become essentially
constant, suggesting that measurements beyond that time may not aggregate useful information for
the inverse problem solution. The influence of the measurement location on sensitivity coefficients
is also investigated in the present work. For instance, consider Fig. 2, which depicts the scaled
sensitivity coefficients with respect to the three parameters, β, K2, and K4, at t = 10, for 0 ≤ x ≤ 1.

Fig. 2. Sensitivity coefficients along the spatial domain x at t = 10.
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It can observed in this figure that xm = 0.5 may be the best position for performing transient
measurements concerning the inverse problem solution. In the present work, besides xm = 0.5, the
use of transient measurements acquired with a single sensor at xm = 0.4 and xm = 0.45 is also
investigated, for the inverse problem solution, in order to illustrate the influence of the measurement
position choice on the confidence intervals of the estimates. In all the results presented hereafter
90 experimental data for the inverse problem solution are considered, obtained from t = 5 up to
t = 95, using a single sensor located at: (i) case 1: xm = 0.5, (ii) case 2: xm = 0.4, and (iii) case 3:
xm = 0.45. For instance, Fig. 3 illustrates a set of experimental data at xm = 0.5, simulated by
employing Eq. (4) with σe = 0.02, yielding, on average, up to 4% of noise in the data. In this figure,
together with the experimental data, the curve obtained from the solution of problem (3) for the
test case under consideration is also plotted.

Fig. 3. Simulated experimental data (red dots) for transient measurements of a sensor located at x = 0.5.
The black curve shows the numerical solution employed to simulate the experimental data.

In the present work, for each of the three measurement positions considered (xm = 0.5, xm = 0.4,
and xm = 0.45, named case 1, 2 and 3, respectively), M = 500 virtual noisy experiments have been
simulated employing σe = 0.02 in Eq. (4), and for each simulated independent experiment, different
values of K2 have been employed, randomly obtained from a normal distribution with 10

−3 mean
and 0.1×10−3 standard deviation (10% of the mean value), which means the 95% confidence interval
for K2 is [0.8 × 10−3, 1.2 × 10−3]. This information concerning K2 is supposed to be obtained in
the first step of the procedure herein proposed, in an experiment where the blocking process does
not occur and the diffusion coefficient can be estimated. The goal here is to investigate how this
uncertainty of the value of K2 propagates into the estimates of β and K4, in the presence of
measurement errors, in the second step, now considering an experiment with anomalous diffusion
and with this a priori information available for the parameter K2.
First, Fig. 4a illustrates the histogram plotted from 500 values of K2 employed in the simulations

for case 1. For a sufficiently large number of simulations, this histogram approaches the exact normal
distribution from which the values of K2 have been sampled. In fact, Fig. 4a demonstrates that
with 500 experiments a fairly good approximation of the distribution considered to be known for
this distribution is obtained. In fact, the 95% confidence interval calculated from these 500 samples
illustrated in Fig. 4a is [0.804 × 10−3, 1.196 × 10−3], which is very close the exact interval which is
[0.8× 10−3, 1.2× 10−3]. Figures 4b and 4c depict the corresponding histograms for the estimates of
the parameters β and K4, respectively, obtained from 500 simulated noisy experiments. It should
be noted that both histograms for β and K4 seem to be slightly asymmetric with respect to the
mean. Whilst this can be a collateral effect of the approximation obtained with a limited number
of simulated experiments, it can be also due to the nonlinearity of the problem, which means that
even if both the experimental errors and the assumed values of K2 are normally distributed, the
statistical distributions of the estimated parameters β and K4 are not necessarily normal.
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a)

b)

c)

Fig. 4. Histogram of: a) sampled values of K2, b) estimates of β, c) estimates of K4.
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Looking at the investigation of the influence of the measurement position on the reliability of the
estimates, we see that Fig. 5 shows the elliptic joint confidence intervals for the estimated parameters
β and K4 for the three cases studied in this work: case 1: xm = 0.5, case 2: xm = 0.4, and case 3:
xm = 0.45. A direct comparison of these three confidence regions shows that the measurements
performed at xm = 0.5 produce the most reliable estimates, whereas the measurements performed
at xm = 0.4 produce the least reliable estimates. It is interesting to notice that this effect is much
more evident in the estimation of K4. It should be noted that the elliptic confidence region becomes
narrow much more in the vertical direction of the graph (K4) than in the horizontal direction of
the graph (β).

Fig. 5. Direct comparison of the elliptic joint confidence regions for β and K4 estimated in cases 1, 2 and 3.

The influence of the measurement position on the reliability of the estimates is better quantified
in Table 1, which besides the mean estimates and confidence intervals for each case, also shows the
ratio between the standard deviation and the mean for each distribution. Recalling that this ratio
was 10% in the assumed estimation ofK2, it can be concluded that the uncertainties were not greatly
amplified into the estimates for β and K4, noting that for case 1 their calculated ratios are 11.38%
and 11.89%, which besides the uncertainty of K2 also include the effect of the measurement errors.
Nonetheless, if another, less favorable measurement position is chosen (cases 2 or 3, for instance),
these ratios increase remarkably, especially for K4. This clearly illustrates the importance of the
adequate choice of the experimental measurements employed for the inverse problem solution.

Table 1. Estimated mean and 95% confidence intervals for β and K4.

Meas. position β
σβ

µβ

× 100% K4 × 105
σK4

µK4

× 100%

Case 1, xm = 0.5 0.203[0.154, 0.246] 11.38% 0.994[0.764, 1.24] 11.89%

Case 2, xm = 0.4 0.201[0.150, 0.250] 12.39% 1.01[0.652, 1.35] 17.14%

Case 3, xm = 0.45 0.202[0.152, 0.248] 12.00% 1.00[0.678, 1.32] 16.00%
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5. CONCLUSIONS

The inverse problem formulation and solution for two unknowns, K4 and β, were investigated
in relation to a new analytical formulation for the simulation of the phenomena of anomalous
diffusion. The investigated inverse problem does not allow for the simultaneous estimation of all
three parameters and a characterization procedure in two steps is proposed. The reliability of the
anomalous diffusion parameters estimates is studied concerning the uncertainty in the experimental
data as well as the propagation of error concerning the value of the diffusion coefficient, estimated
in the first step. The inverse analysis was carried out for transient measured experimental data
obtained with a single sensor, whose position was investigated with respect to the correspond-
ing estimates obtained. The results show that the errors present in the inputs do not amplify
significantly into the estimates of the anomalous diffusion parameters. Nevertheless, location and
time interval in which the measured data are acquired in order to be employed in the inverse
problem solution have to be chosen with care, since they affect remarkably the reliability of the
estimates.
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