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Over the last two decades, functional Magnetic Resonance Imaging (fMRI) has provided
immense data about the dynamics of the brain. Ongoing developments in machine learning
suggest improvements in the performance of fMRI data analysis. Clustering is one of the
critical techniques in machine learning. Unsupervised clustering techniques are utilized
to partition the data objects into different groups. Supervised classification techniques
applied to fMRI data facilitate the decoding of cognitive states while a subject is engaged
in a cognitive task. Due to the high dimensional, sparse, and noisy nature of fMRI data,
designing a classifier model for estimating cognitive states becomes challenging. Feature
selection and feature extraction techniques are critical aspects of fMRI data analysis.
In this work, we present one such synergy, a combination of Hierarchical Consensus Clus-
tering (HCC) and the Statistics of Split Timeseries (SST) framework to estimate cognitive
states. The proposed HCC-SST model’s performance has been verified on StarPlus fMRI
data. The obtained experimental results show that the proposed classifier model achieves
99% classification accuracy with a smaller number of voxels and lower computational cost.
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1. Introduction

Machine learning classifier models, such as unsupervised and supervised tech-
niques, have been used to analyze fMRI over the past couple of decades. In
human brain diagnosis, there are numerous imaging modalities. These brain
imaging modalities are functional and structural imaging modalities, and among
them functional MRI provides functional information about the brain. Func-
tional brain imaging modalities are useful in diagnosing human brain-related
disorders such as epilepsy, brain tumors, Alzheimer’s disease, and Parkinson’s
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disease. The brain image sequence in fMRI data consists of Hemodynamic Re-
sponse Function (HRF), expressed in terms of Blood Oxygen Level Dependent
(BOLD) signal at different time intervals [1].

The fMRI method is a noninvasive brain imaging technique for diagnosing
the human brain. The brain imaging modality detects neural responses with the
help of the BOLD signal contrast [2]. Additionally, fMRI plays a crucial role in
neuroscience research for analyzing human brain activity associated with cog-
nition or perception. The dimensionality of fMRI is a significant issue in fMRI
image classification. Machine intelligence algorithms are developed for cognitive
state classification and functional connectivity analysis using fMRI data [3]. In
general, fMRI data consists of several brain Regions of Interest (ROIs). Each
region of the brain comprises a few thousand voxels. Because of the large fMRI
data dimensionality, classification or decoding the human brain states becomes
more challenging. In the context of healthcare data analysis, the development of
computational algorithms is essential [4, 5]. Therefore, the selection of relevant
voxels is a critical challenge in fMRI data analysis.

Cognitive activities in the human brain have been analyzed using differ-
ent machine intelligence algorithms, such as clustering and classification tech-
niques [6]. Clustering is an unsupervised machine learning algorithm, and clas-
sification of objects is a supervised learning technique. The image sequences in
the fMRI data consist of a voxel time course. The fMRI data for a particular
human subject comprises a set of ROIs. A critical challenge in classifying cog-
nitive states using fMRI data is determining the ROIs that are responsive to
a particular cognitive task. In general, clustering algorithms segment the brain
regions using fMRI data. In general, hybrid clustering algorithms provide stable
clustering groups in fMRI data with the help of multiple base clustering tech-
niques [7, 8]. Partitioning the brain regions using fMRI data is an unsupervised
data analysis problem. The machine learning classifier performance depends on
the attributes used to build the classifier [9]. The selection of appropriate fea-
tures is essential for efficient analysis of fMRI data. The standard approach used
for evaluating the choice of a subset of features is classification accuracy. The
selection of relevant features holds many implications for the fMRI data analysis
problem.

In general, fMRI data features a limited number of samples but a higher
number of significant observations. Thus, there is a need for appropriate fea-
ture selection and feature extraction techniques that will help in selecting stable
features across fMRI data. Clustering and classification problems are generally
viewed as independent components in data analysis. In this work, we consider
a two-phase approach for cognitive state classification. The first phase involves
the application of clustering techniques to fMRI data to partition the fMRI data
into multiple groups and select relevant features (voxels). In the second phase,
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statistical features are extracted to develop a machine-learning classifier for cog-
nitive state classification. In this work, we employ HCC in conjunction with
statistics of a split time series framework to decode human brain states. The
proposed classification framework improves classification accuracy with a mini-
mum number of voxels as features. The rest of the article includes a background
provided in Sec. 2. Section 3 discusses related work. Section 4 presents the pro-
posed clustering-split time series framework. The obtained classification results
are elaborated in Sec. 5, and finally, conclusion is provided in Sec. 6.

2. Background

The two fundamental approaches for fMRI data analysis include: 1) map-
ping the brain states while subjects perform a particular cognitive task, and
2) segmenting brain regions into various clusters [10]. Classification of data sam-
ples is considered a supervised learning technique. The fMRI dataset consists of
voxel instances. The instances in the dataset used by the classifier are denoted
as features. These features are generally independent and individual variables
within the dataset. Classifiers are a tangible implementation of pattern recog-
nition in the form of the classification of objects. Classification algorithms map
unlabeled data samples to a particular category or class.

On the other hand, unsupervised clustering algorithms identify similar groups
in the dataset [11]. Clustering algorithms partition the data objects into differ-
ent groups based on distance metrics or a similarity measure between the data
objects. The objects present in the group are similar to the objects in the same
group but different from those in the other group. Clustering algorithms are
broadly categorized into three types: 1) unsupervised clustering, 2) supervised
clustering, and 3) semi-supervised clustering.

In general, basic clustering algorithms are unsupervised. The clustering algo-
rithms consider a set of unlabeled objects and group them into a specific number
of clusters without considering any labels of the objects. In clustering algorithms,
the cluster centroid identifies these clusters. Unsupervised clustering techniques
lack knowledge of the relationship between objects present in the dataset and
rely on distance metrics or similarity measures for clustering.

Similarity measures play a crucial role in computing the similarity between
the data objects. The distance measure used in clustering algorithms quanti-
fies the similarity between two objects. It represents similarity or dissimilarity
between the objects [12]. A smaller distance between the objects indicates high
similarity, while a greater distance between the objects suggests low similarity.
Therefore, the main requirement of similarity metric calculation is to obtain an
appropriate similarity or distance function [13].
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2.1. Similarity measures

There are various types of standard distance metrics, which are discussed
below. The similarity measures are usually probability distribution-based and
metric-based techniques.

2.1.1. Euclidean distance. The metric used for comparing two data vectors
y1i and y2i is given by Eq. (1). The index i iterates over all values in the data
vector. The distance metric provides the geometric distance between two ob-
jects:

de =

√√√√ n∑
i=1

(y1i − y2i)2. (1)

2.1.2. Manhattan distance. It is similar to Euclidian distance and calculated
by considering the sum of the absolute distance between the two data vectors,
as represented in Eq. (2):

dM =
n∑

i=1

(y1i − y2i). (2)

2.1.3. Pearson’s correlation. The expression for Pearson’s correlation coef-
ficient r is expressed as shown in Eq. (3):

r =

n∑
i=1

(y1i − y1)(y2i − y2)√√√√ n∑
i=1

(y1i − y1)

√√√√ n∑
i=1

(y2i − y2)

, (3)

where y1 is the mean vector of y1 and y2 is the mean vector of y2. The metric
measures provide the tendency of vectors to increase or decrease together. The
metric ranges from −1 to 1. A value −1 indicates that the vectors are negatively
correlated and opposite, 0 represents no correlation and independent vectors,
and 1 indicates that the vectors are positively correlated and identical to each
other. Clustering algorithms use these similarity metrics as distance metrics for
partitioning data into multiple groups. Popular and commonly used clustering
techniques include hierarchical clustering, k-means clustering, and spectral clus-
tering. In this work, we consider the HCC algorithm for partitioning fMRI data
into different groups.
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2.1.4. Hierarchical consensus clustering. HCC is also known as clustering
aggregation or cluster ensemble. The algorithm aims to determine a single par-
titioning of data from several existing base clusterings [14]. It has been accepted
that CC can assist in finding unusual clusters, generate robust clustering results,
handle outliers, sample variations, and noise, and combine solutions from various
attributes or features. HCC is considered a combinatorial optimization problem,
and it is proven to be NP-complete. Several algorithms have been proposed to ad-
dress computational challenges, including graphbased techniques, co-association
matrix-based clustering techniques, and prototype-based techniques.

HCC employs base clustering techniques to obtain various groupings for
a given set of observations using various initializations. Then, the consensus
clustering (CC) identifies robust clusters across these partitions. The obtained
partitions are insensitive to the initialization of the fundamental clustering al-
gorithms. These clustering groups are determined through:

1) Applying different base clustering techniques.
2) Applying a similar clustering algorithm with different parameters.
3) Using clustering algorithm with various distance metrics.
4) Employing various clustering initializations of a similar clustering algo-

rithm.
5) Using various attributes of the data.
6) Combining some or all of the above.
The HCC generates different data partitions using base clustering techniques,

such as k-means, hierarchical, and spectral clustering, each with various initial-
izations for different clusters. The segmentation of human brain regions using
fMRI data is treated as a clustering problem. The clustering algorithms dis-
cussed above group voxels into different clusters with low inter-cluster and high
intra-cluster similarity [15].

Clustering algorithms are used to segment human brain regions (ROIs) with
the help of fMRI data. The selection of features (voxels) from the fMRI dataset is
an important activity in classifying brain states. In general, voxels in the dataset
have a time series, which is considered as a feature. Given that the fMRI dataset is
generally high-dimensional, much research is directed toward dimensional reduc-
tion and voxel selection (feature selection) [16]. In this work, we use HCC to
select voxels as features for classifying cognitive states. First, voxels are selected
randomly from each group. Then, the obtained voxels are split into two halves
and the statistical average or mean is computed for each half.

In general, feature extraction techniques [17] are employed to generate new
attributes to build a classifier for cognitive state classification. Usually, the size
or dimension of fMRI data, including both spatial and temporal dimensions,
is high, often in terms of a few thousand. Statistics is the field of science that
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focuses on collecting, analyzing, and drawing conclusions from data. Statistical
techniques are used to summarize, organize, and draw conclusions from data.
Therefore, familiarity with statistical literacy and statistical methods is vital in
data analysis. Fundamental statistical parameters, such as the mean, are com-
puted for each half of the voxel time series.

2.1.5. Mean or average. One category of statistical parameters determines
how a set of numbers is centered around a specific point. This category of param-
eters is called central tendency. The most familiar parameter of this type is the
average or mean. The parameter mean is represented as the arithmetic average
of a set of numbers. The mean provides an indication of where the center lies
for a given set of numbers. The statistical mean is determined by considering
the objects or numbers in the given set. The formula for the statistical mean is
given in Eq. (4):

y =

n∑
i=1

yi

N
, (4)

where y is the mean – the cumulative sum of all the numbers in the dataset and
N is the total number of observations present in the data. The statistical mean
is the most standard measure of central tendency.

2.1.6. Standard deviation. Standard deviation provides an approximate av-
erage quantity. Every number in a dataset varies from the center. Statisticians
consider the standard deviation as a good measure of variation, especially in
inferential statistics. There are two different expressions for standard deviation,
one for the sample standard deviation, which is given in Eq. (5):

S =

√∑
(yi − y)2

N − 1
, (5)

where S represents the standard deviation, and the other for the population
standard deviation, as given in Eq. (6):

σ =

√∑
(yi − y)2

N
. (6)

In the sample standard deviation, N − 1 is in the denominator, and the cor-
rection of −1 is added to correct bias. The correction makes the value of sample
standard deviation more significant than the population standard deviation. In
general, statisticians work with sample standard deviation rather than popula-
tion standard deviation.
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2.1.7. Variance. Variance is a measure of variation, and it has some math-
ematical relationship with standard deviation. It is represented as the average
of the square of the standard deviation. In other words, variance has the same
formula as we use for standard deviation except the absence of the square root
in the final expression. The expression for sample variance is given in Eq. (7):

S2 =

∑
(yi − y)2

N − 1
. (7)

The expression for population variation is given in Eq. (8):

σ2 =

∑
(yi − y)2

N
, (8)

where S2 is the sample variance, and σ2 is the population variance. Variance is
a quite frequently used parameter in inferential statics. However, due to its con-
ceptual drawbacks (square in the formula), standard deviation is more prevalent
in inferential and descriptive statistics.

3. Related work

In this section, we discuss the related machine intelligence models for different
feature selection and classification algorithms for decoding human brain states.
In the literature, researchers have proposed techniques for analyzing fMRI data
[10, 18, 19]. Computational approaches of Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) are widely used techniques for fMRI data analy-
sis [20, 21]. For instance, a GA based on entropy and a linear collaborative
discriminant regression hybrid framework is applied to find the maximum sig-
nificant voxels [22]. The stable feature selection is an important criterion for
model selection in classifying cognitive states [23]. The whole-brain fMRI data is
partitioned into three-dimensional volumes called voxels. The most appropriate
voxels as features are obtained from symmetrical uncertainty based on the en-
tropy framework for decoding the brain states [24]. In all these studies, machine
intelligence techniques are used to decode human brain states using fMRI data.

A constrained spatiotemporal independent component analysis technique,
based on multi-objective optimization, is applied to real and simulated fMRI
data [25]. This method is able to perform source recovery from fMRI data. How-
ever, deep learning techniques that decode the cognitive states from fMRI data
are hindered by high dimensionality and a small sample size. In this context,
the transfer learning framework provides a solution to some extent [26]. The
functional connectivity concept is considered as an important tool for the clas-
sification of fMRI data. A parcellation technique provides a measure of node-
to-functional network assignment changes across cognitive states and subjects.
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Using fMRI data obtained across several cognitive tasks is considered to demon-
strate the connectivity changes. The technique achieves an average accuracy
of 97% [27]. The fMRI brain imaging modality is able to determine the acti-
vation of brain regions and functional connectivity among them. The interest
in the use of functional brain imaging modalities along with machine intelli-
gence is gaining increasing interest. Machine learning techniques hold significant
potential for understanding and diagnosing brain-related disease progress [28].
A dynamic graph learning technique was employed for generating an ensemble
of dynamic graph that helps in developing brain networks for the classification of
cognitive states [29]. The multidomain brain decoder learns the spatiotemporal
changes in brain response within a specific time window. A model performance
was evaluated using task-based fMRI data with an accuracy of 90% [30].

The voxel selection process is categorized into the wrapper method and the
filter method. The filter method achieves the selection of relevant voxels using
relevance measures. In the case of the wrapper method, the optimized feature
subsets are obtained for feature selection. The attributes present in fMRI data
in connection with a particular ROI are typically obtained. In this work, we
consider HCC in conjunction with SST series for decoding human brain states.
The proposed classification framework improves the classification accuracy values
using a minimum number of voxels as features. Further details of the proposed
framework are elaborated on in the next section.

4. Proposed clustering-split time series framework

Machine intelligence techniques, such as clustering and classification, are ap-
plied separately for the fMRI data analysis. In this study, we develop a novel
classification framework for the estimation of human brain states. The frame-
work considers a hierarchical clustering algorithm for voxel selection, followed
by statistical features extracted from the selected voxels. Machine learning clas-
sifiers are then developed using these extracted features for decoding human
brain states. This approach produces few voxels as attributes for decoding hu-
man brain states. The functional block diagram of the proposed clustering split
time series framework is given in Fig. 1. The clusteringsplit time series model
applies various base clustering techniques to voxel time series. Voxels are ran-
domly selected from clusters, split into two halves, and then statistical features
are extracted from each half. Feature vectors are next formed from the obtained
statistical features. Finally, the obtained feature vectors are applied as input
to the Gaussian naive Bayes (GNB), XGBoost, and Support Vector Machine
(SVM) classifiers. The classification accuracy of the three classifiers is compared
for cognitive state classification. A detailed description of the steps involved in
the framework is given below.
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Fig. 1. Proposed HCC-SST framework for cognitive state classification framework.

Step 1: Select the brain regions.
In general, fMRI data consists of several ROIs with a specific number of trials.

Each ROI comprises a certain number of voxels. Therefore, it is always difficult
to run the algorithm with whole-brain data. Hence, the framework begins with
the selection of a specific number of ROIs.
Step 2: Extract the voxel time course for selected ROIs for each cognitive task.

The time series of voxels is extracted for the selected ROIs across various
cognitive tasks. For example, let T1 and T2 be voxel time courses for two cogni-
tive tasks within a specific fMRI image sequence. One of the critical features of
the proposed clustering-split time framework is the clustering performed based
on a single trial data or image sequence to select voxels for the remaining trial
data.
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Step 3: Select the voxels as features from different clusterings or groups.
HCC is applied to voxel time series data for each cognitive task. HCC pro-

vides robust clusters for a given fMRI data by employing fundamental clustering
algorithms to partition the functional MRI data. The fundamental clustering
technique is chosen as k-means, hierarchical, and spectral clustering algorithms.
The base clustering techniques are applied for a specific number of clusters k = 2
to 10, which means that for every k, ten numbers of fundamental clusterings with
various initializations are obtained. The consensus matrix CDk is defined for each
clustering and dataset, where D denotes a pair of cognitive data represented
as dataP and dataS. CDk is also known as the average consensus matrix. The
similarity between different partitions is obtained using the average consensus
matrix CDk. The (i, l)-th entry of CDk is given in Eq. (9):

CDk =
nil
N
, (9)

where nil denotes the number of times voxels are clustered together in a similar
group, and N represents the number of clustering partitions. If the value of CDk

is equal to or close to one, voxels are clustered together in a similar group. If the
value of CDk is far from one or close to zero, voxels are not clustered together in
a similar group. Hierarchical average link-based CC is applied over CDk for each
k and each cognitive dataset. For each cluster, dissimilarity is obtained with the
help of various dissimilarity measures. These measures include: 1) variation of
information (VI), 2) normalized variation of information (NVI), 3) normalized
mutual information (NMI), and 4) rand index (RI). These dissimilarity measures
are used to determine the optimal dissimilarity among the pair of cognitive
datasets, and k∗ is determined as the optimal number of stable clusters.

The normalized mutual information finds the dissimilarity between two par-
titions, as given in Eq. (10):

NMI(Li,k, Lj,k) =
2I(Li,k, Lj,k)

H(Li,k) + H(Lj,k)
, (10)

where Li,k and Lj,k represent the voxel labels for the pair of cognitive tasks
I(Li,k, Lj,k) represents the mutual information, and H(Li,k) and H(Lj,k) repre-
sent the entropy of the voxels. The two partitions are considered to be similar if
the value of NMI is one, and they dissimilar if the value of NMI is zero.

The dissimilarity measure variation of information between two partitions is
given in Eq. (11):

VI(Li,k, Lj,k) = H(Li,k) + H(Lj,k)− 2I(Li,k, Lj,k). (11)

The maximum value of VI is considered a measure to select the optimal number
of clusters.
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The normalized variation of information between the two partitions is given
in Eq. (12):

NVI(Li,k, Lj,k) =
VI

M
, (12)

where M represents the number of voxels in the partition, and the maximum
value of the metric is considered for selecting the optimal number of clusters.

The RI metric compares dissimilarity among pairs of partitions as follows:

RI(Li,k, Lj,k) =
n11 + n00

n00 + n10 + n01 + n11
. (13)

In Eq. (13), n11 denotes the number of pairs of voxels present in a similar
partition, n10 and n01 denote the number of voxels in the similar cluster in
one partition and different in the other partition, and n00 represents the number
of voxels in different clusters. The minimum value of RI is used as a metric for
determining the optimal cluster. The optimal number of clusters (k∗) is obtained
by comparing dissimilarity among the partitions. Voxels are randomly selected
from each group for a given pair of cognitive datasets. The selected few voxels
are applied as input to the statistics split time series framework.
Step 4: Extract statistical features for selected voxels.

The statistical measure mean or average is calculated for each voxel. Accord-
ing to the principle of fMRI, the voxel time course is delayed in nature. The
voxel time series is partitioned into two halves. The mean value of each voxel
time series is determined as follows:

m1 =
2

L

L/2∑
i=1

V (i), (14)

m2 =
2

L

L∑
i=L

2
+1

V (i), (15)

where m1 represents the mean value for the first half of the voxel time series.
Similarly, m2 represents the mean value for the second half of the voxel time
course. Finally, the mean vector M for a given voxel is determined by appending
m1 and m2, i.e., M = [m1m2]. From the obtained values of M feature vectors are
then generated.
Step 5: Machine learning classifiers are built for the classification of cognitive

states or decoding brain states.
The feature vectors generated in Step 4 are used to develop machine learning

classifiers such as the GNB classifier, SVM classifier, and XGBoost classifier.
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5. Results and discussion

The performance of the proposed HCC-SST framework is evaluated using the
standard StarPlus fMRI dataset. This section elaborates on experimental results
obtained for the proposed classification model. The proposed framework perfor-
mance is examined on six healthy subjects from the StarPlus fMRI dataset. The
dataset consists of six subjects. Each subject is identified by a unique ID number:
subject 05680, subject 04847, subject 04820, subject 05675, subject 05710,
and subject 04799 [31]. Three machine learning classifiers are built and compared
to verify the performance of the proposed model. The classifiers are: SVM, GNB,
and XGBoost and are applied to the classification of cognitive states. Leave-one-
out-cross validation (LOOCV) is performed using the obtained features.

Secondly, the classifiers are built in five ways: 1) using whole-brain data
(all ROIs), 2) using the seven most important brain regions (LIPS, LDLPFC,
CALC, LIPL, LT, LTRIA, and LOPER) as highlighted in the dataset, 3) using
seven significant ROIs with HCC, 4) using seven significant ROIs with SST, and
5) using seven significant ROIs with proposed HCC-SST framework. Finally, the
classification accuracy of classifiers is compared.

The proposed framework is a two-phase approach for cognitive state classifi-
cation. HCC is applied to each subject in the first level and selects a few voxels.
Then, in the next level, statistical mean features are extracted. The voxels cho-
sen in the first level have a definite standard time course, represented by several
time instants.

The length of the voxel time course is split into two halves, and mean values
are calculated for each half of the time series. The obtained statistical mean
values are used as attributes to build a machine-learning classifier. The results
obtained for six subjects in the StarPlus fMRI dataset are shown in Tables 1,
2, 3, 4, 5, and 6. Also, the classification accuracy results for each classifier are
compared.

Three classifiers are built using voxels from the entire brain (considering vox-
els from all 25 ROIs) and the seven most important brain regions, as highlighted
in the StarPlus dataset. The obtained classification accuracy results of the pro-
posed framework are compared with the HCC feature selection framework [32]
and SST series feature extraction framework [33].

Table 1 presents the obtained classification accuracy results for subject 04799.
A total of 4949 voxels are available for subject 04799. The classifiers are built
using LOOCV with all the available voxels as features. The results obtained
are 87%, 90%, and 97% for the GNB classifier, SVM classifier, and XGBoost
classifier, respectively. Subject 04799 consists of 1884 voxels for the seven most
significant brain regions. The classifiers are built for these selected voxels. The
classifiers are trained and tested with 1884 voxels. The classification results
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Table 1. Classifier performance for subject 04799.

S. No. Machine learning classifier Criteria Voxels Accuracy [%]
1 GNB (all ROIs) without CC and SST 4949 87
2 GNB (seven ROIs) without CC and SST 1884 86
3 GNB (all ROIs) with CC 530 85
4 GNB (seven ROIs) with SST 1884 88
5 GNB (seven ROIs) with CC and SST 80 85
6 SVM (all ROIs) without CC and SST 4949 90
7 SVM (seven ROIs) without CC and SST 1884 92
8 SVM (seven ROIs) with CC 530 80
9 SVM (seven ROIs) with SST 1884 98
10 SVM (seven ROIs) with CC and SST 80 95
11 XGBoost (all ROIs) without CC and SST 4949 97
12 XGBoost (all ROIs) without CC and SST 1884 96
13 XGBoost (all ROIs) with CC 530 84
14 XGBoost(all ROIs) with SST 1884 84
15 XGBoost (all ROIs) with CC and SST 80 88

obtained are 86%, 92%, and 96% for GNB, SVM, and XGBoost, respectively.
A total of 530 voxels are selected from CC for the seven most important brain
regions. The classifiers are trained and tested with the help of 530 voxels. The
classification accuracy results obtained are 85%, 80%, and 84% for GNB, SVM,
and XGBoost classifiers, respectively. Next, SST series concept is executed on the
seven best ROIs. The obtained classification accuracy results are 88%, 98%, and
84% for the GNB classifier, SVM classifier, and XGBoost classifier. The proposed
HCC-SST series is verified to the seven most important ROIs of subject 04799.
A total of 80 voxels are selected from HCC. In the second phase, statistical mean
values are computed for each voxel as features. Machine learning classifiers are
built with these features. The obtained classification accuracy results are 85%,
95%, and 88% for the GNB classifier, SVM classifier, and XGBoost classifier,
respectively.

Table 2 presents the obtained classification accuracy results for subject 04847.
A total of 4098 voxels is available for subject 04848. The classifiers are trained
and LOOCV is performed with the help of all existing voxels as features. The
obtained results are 94%, 99%, and 97% for GNB, SVM, and XGBoost classifiers,
respectively. Subject 04847 consists of 1714 voxels for the seven most significant
brain regions. Machine learning classifiers are built for these selected voxels. The
classifiers are trained and tested with 1714 voxels. The classification accuracy
results obtained are 95%, 99%, and 95% for GNB, SVM, and XGboost, respec-
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Table 2. Classifier performance for subject 04847.

S. No. Machine learning classifier Criteria Voxels Accuracy [%]
1 GNB (all ROIs) without CC and SST 4098 94
2 GNB (seven ROIs) without CC and SST 1714 95
3 GNB (all ROIs) with CC 174 92
4 GNB (seven ROIs) with SST 1714 90
5 GNB (seven ROIs) with CC and SST 80 99
6 SVM (all ROIs) without CC and SST 4098 99
7 SVM (seven ROIs) without CC and SST 1714 99
8 SVM (seven ROIs) with CC 174 90
9 SVM (seven ROIs) with SST 1714 98
10 SVM (seven ROIs) with CC and SST 80 99
11 XGBoost (all ROIs) without CC and SST 4098 97
12 XGBoost (all ROIs) without CC and SST 1714 95
13 XGBoost (all ROIs) with CC 174 92
14 XGBoost(all ROIs) with SST 1714 90
15 XGBoost (all ROIs) with CC and SST 80 92

tively. A total of 174 voxels are selected from CC for the seven most important
brain regions. The classifiers are built and tested with 174 voxels. The classifi-
cation accuracy results obtained are 92%, 90%, and 92% for the GNB classifier,
SVM classifier, and XGBoost classifier, respectively. Next, SST series concept is
executed on the seven best ROIs. The obtained classification accuracy results are
90%, 98%, and 90% for the GNB, SVM, and XGBoost classifiers, respectively.
The proposed HCC-SST series is verified on the seven most important ROIs
of subject 04847. A total of 80 voxels are selected from HCC. In the second
phase, statistical mean values are computed for each voxel as features. Machine
learning classifiers are built with these features. The obtained classification ac-
curacy results are 99%, 99%, and 92% for GNB, SVM, and XGBoost classifiers,
respectively.

Similarly, Tables 3, 4, 5, and 6 elaborate on the obtained classification ac-
curacy results for subjects 04820, 05710, 05680, and 05675, respectively. Among
the experiments conducted, the proposed classification framework achieves 98%,
99%, and 90% accuracy with 140 voxels for subject 04820 (Table 3). The pro-
posed model achieves 95%, 99%, and 98% with 100 voxels for subject 05710
(Table 4). The proposed model achieves 90%, 99%, 99% with 220 voxels for the
subject 05680 (Table 5).

The classification accuracy of 95%, 99%, and 90% is obtained with 80 voxels
using the GNB, SVM, and XGBoost classifiers, respectively. Table 7 compares
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Table 3. Classifier performance for subject 04820.

S. No. Machine learning classifier Criteria Voxels Accuracy (%)
1 GNB (all ROIs) without CC and SST 5015 94
2 GNB (seven ROIs) without CC and SST 1741 92
3 GNB (all ROIs) with CC 595 80
4 GNB (seven ROIs) with SST 1741 90
5 GNB (seven ROIs) with CC and SST 140 98
6 SVM (all ROIs) without CC and SST 5015 99
7 SVM (seven ROIs) without CC and SST 1741 98
8 SVM (seven ROIs) with CC 595 76
9 SVM (seven ROIs) with SST 1741 82

10 SVM (seven ROIs) with CC and SST 140 99
11 XGBoost (all ROIs) without CC and SST 5015 94
12 XGBoost (all ROIs) without CC and SST 1741 88
13 XGBoost (all ROIs) with CC 595 84
14 XGBoost(all ROIs) with SST 1741 88
15 XGBoost (all ROIs) with CC and SST 140 90

Table 4. Classifier performance for subject 05710.

S. No. Machine learning classifier Criteria Voxels Accuracy [%]
1 GNB (all ROIs) without CC and SST 4634 95
2 GNB (seven ROIs) without CC and SST 1884 88
3 GNB (all ROIs) with CC 610 92
4 GNB (seven ROIs) with SST 1884 90
5 GNB (seven ROIs) with CC and SST 100 95
6 SVM (all ROIs) without CC and SST 4634 99
7 SVM (seven ROIs) without CC and SST 1884 99
8 SVM (seven ROIs) with CC 610 90
9 SVM (seven ROIs) with SST 1884 95
10 SVM (seven ROIs) with CC and SST 100 99
11 XGBoost (all ROIs) without CC and SST 4634 95
12 XGBoost (all ROIs) without CC and SST 1884 95
13 XGBoost (all ROIs) with CC 610 94
14 XGBoost(all ROIs) with SST 1884 94
15 XGBoost (all ROIs) with CC and SST 100 98
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Table 5. Classifier performance for subject 05680.

S. No. Machine learning classifier Criteria Voxels Accuracy [%]
1 GNB (all ROIs) without CC and SST 5062 99
2 GNB (seven ROIs) without CC and SST 2031 97
3 GNB (all ROIs) with CC 520 90
4 GNB (seven ROIs) with SST 2031 96
5 GNB (seven ROIs) with CC and SST 220 90
6 SVM (all ROIs) without CC and SST 5062 99
7 SVM (seven ROIs) without CC and SST 2031 99
8 SVM (seven ROIs) with CC 520 89
9 SVM (seven ROIs) with SST 2031 96
10 SVM (seven ROIs) with CC and SST 220 99
11 XGBoost (all ROIs) without CC and SST 5062 96
12 XGBoost (all ROIs) without CC and SST 2031 98
13 XGBoost (all ROIs) with CC 520 90
14 XGBoost(all ROIs) with SST 2031 94
15 XGBoost (all ROIs) with CC and SST 220 99

Table 6. Classifier performance for subject 05675.

S. No. Machine learning classifier Criteria Voxels Accuracy [%]
1 GNB (all ROIs) without CC and SST 5134 88
2 GNB (seven ROIs) without CC and SST 2061 90
3 GNB (all ROIs) with CC 580 92
4 GNB (seven ROIs) with SST 2061 88
5 GNB (seven ROIs) with CC and SST 80 95
6 SVM (all ROIs) without CC and SST 5134 99
7 SVM (seven ROIs) without CC and SST 2061 99
8 SVM (seven ROIs) with CC 580 90
9 SVM (seven ROIs) with SST 2061 97
10 SVM (seven ROIs) with CC and SST 80 99
11 XGBoost (all ROIs) without CC and SST 5134 92
12 XGBoost (all ROIs) without CC and SST 2061 88
13 XGBoost (all ROIs) with CC 580 90
14 XGBoost(all ROIs) with SST 2061 86
15 XGBoost (all ROIs) with CC and SST 80 90
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Table 7. Comparison of classifier performance.

S. No. Subject Parameter Gupta and Chatur [22] Ranjan et al. [24]
Proposed
HCC-SST
technique

1 04799
No. of voxels 482 61 80
Accuracy 97 90 99

2 04847
No. of voxels 2045 39 80
Accuracy 95 95 99

3 04820
No. of voxels 2354 46 140
Accuracy 98 95 98

4 05710
No. of voxels 2075 44 100
Accuracy 96 93 99

5 05680
No. of voxels 2474 40 220
Accuracy 97 90 99

6 05675
No. of voxels 2140 60 80
Accuracy 97 97 99

the proposed method with existing techniques applied to a similar dataset. The
results are compared with Gupta and Chatur [22] and Ranjan et al. [24]. It is ob-
served that the proposed HCC-SST time series framework performs both feature
selection and feature extraction for cognitive state classification. Furthermore,
the proposed framework achieves good classification accuracy with a minimum
number of voxels and smaller computational cost, without deep learning archi-
tecture, when compared to existing techniques.

6. Conclusions

An efficient classification framework based on HCC and SST was proposed
in this paper. The proposed classification algorithm selected the stable features
from fMRI dataset. The proposed algorithm aimed to choose the minimum num-
ber of voxels to reduce computational time while decoding the brain states. The
time course of selected voxels was split into two halves, and the statistical mean
was computed for each half of the voxel time course. The extracted features
are used to build a classifier for cognitive state classification. The performance
of the proposed framework was examined on six subjects in the StarPlus fMRI
database. For six subjects in the StarPlus fMRI dataset, the obtained classifier re-
sults are compared with existing cognitive state classification results. The results
demonstrate that the proposed HCC-SST technique outperforms the results re-
ported in the existing techniques by achieving higher accuracy. The experimental
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results show that the proposed approach has scored 99% accuracy with a reduced
number of voxels and lower computational cost compared to existing methods.
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