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In the paper, the thin metal film subjected to the ultrashort laser pulse has been analyzed. The heat
conduction in the domain considered has been described by two-temperature model consisting of the sys-
tem of two coupled parabolic equations determining the electron and lattice temperatures. The sensitivity
analysis of electron and lattice temperatures with respect to the parameters appearing in mathematical
description has been discussed. In particular, the changes of temperatures due to the changes of coupling
factor G and the film thickness L have been estimated. At the stage of numerical computations in a case
of basic as well as sensitivity problems solutions the explicit scheme of finite difference method has been
used. In the final part of the paper the results of computations have been shown.
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1. INTRODUCTION

The differences between the macroscopic heat conduction equation that is based on the Fourier
law and the models describing the microscale heat transfer occur because of the extremely short
duration, extreme temperature gradients and very small geometrical dimensions of domain con-
sidered [11]. Microscale heat transfer can be described by many different models, in particular:
the Cattaneo-Vernotte equation, the dual phase lag model, the two-temperature models and the
Boltzmann equation. In this paper, the parabolic two-temperature model is presented. This model
involves two energy equations determining the heat exchange in the electron gas and metal lattice.
Sensitivity analysis of the problem discussed allows to estimate the influence of parameters per-
turbations on the course of thermal processes in the domain considered. In this article, the direct
approach of sensitivity analysis [6] is applied (the sensitivity model results from the differentiation
of energy equations and boundary-initial conditions with respect to parameter considered). In par-
ticular, the changes of electrons and phonons temperatures due to the coupling factor G and film
thickness L perturbations have been estimated. In the final section the examples of computations
are presented and the conclusions are formulated.

2. FORMULATION OF THE PROBLEM

A thin film of thickness L is considered. A surface x = 0 is irradiated by an ultrashort laser
pulse (Fig. 1). The temporal and spatial evolution of the lattice and electrons temperatures in the
irradiated metal is described by equations [1, 2]

Ce(Te)
∂ Te(x, t)

∂ t
=

∂

∂ x

[

λe(Te, Tl)
∂ Te(x, t)

∂ x

]

−G [Te(x, t)− Tl(x, t)] +Q(x, t) (1)
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and

Cl
∂ Tl(x, t)

∂ t
= λl

∂ 2Tl(x, t)

∂ x2
+G [Te(x, t)− Tl(x, t)] , (2)

where Ce (Te), Cl are the volumetric specific heats of the electrons and lattice, respectively, λe(Te,
Tl), λl are the thermal conductivities, G is the electron-phonon coupling factor related to the rate
of the energy exchange between electrons and lattice. The internal heat source Q (x, t) connected
with the laser action is given as [2]

Q(x, t) =

√

β

π

1−R

tpδ
I0 exp

[

−
x

δ
− β

(t− 2 tp)
2

t2p

]

, (3)

where I0 is the laser intensity, tp is the characteristic time of laser pulse, δ is the optical penetration
depth, R is the reflectivity of the irradiated surface and β = 4ln2.

Fig. 1. Thin film.

Taking into account the short period of laser heating, heat losses from the front and the back
surfaces of the thin film can be neglected [2], this means

qe(0, t) = qe(L, t) = ql(0, t) = ql(L, t) = 0, (4)

where qe (x, t), ql (x, t) are the heat fluxes for electron and lattice systems, respectively. The initial
conditions are in the form

t = 0: Te(x, 0) = Tl(x, 0) = Tp. (5)

To define the thermal conductivity λe and heat capacity Ce of electrons the following formulas are
widely used [2, 7, 9, 10]

λe(Te, Tl) = λ0
Te

Tl
(6)

and

Ce(Te) = γTe, (7)

where λ0, γ are the material constants and Cl, λl (see, for example, Eq. (2)) are constant values.

It should be pointed out that the simple form of dependences (6), (7) and constant values of Cl

and λl are only suitable for low laser intensity [7].
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3. SENSITIVITY ANALYSIS – DIRECT APPROACH

To estimate the changes of electrons and phonons temperatures due to the parameter considered
(e.g., coupling factor G, layer thickness L) the direct approach of sensitivity method is applied [4,
6]. This approach is connected with the differentiation of governing equations with respect to the
parameter considered.
So, the differentiation of Eqs. (1) and (2) with respect to the coupling factor G gives

dCe(Te)

dTe

∂ Te

∂ G

∂ Te

∂ t
+Ce(Te)

∂

∂ t

(

∂ Te

∂ G

)

=
∂

∂ x

[(

∂ λe(Te, Tl)

∂ Te

∂ Te

∂ G
+

∂ λe(Te, Tl)

∂ Tl

∂ Tl

∂ G

)

∂ Te

∂ x
+ λe(Te, Tl)

∂

∂ x

(

∂ Te

∂ G

)]

− (Te − Tl) − G

(

∂ Te

∂ G
−

∂ Tl

∂ G

)

(8)

and

Cl
∂

∂ t

(

∂ Tl

∂ G

)

= λl
∂2

∂ x2

(

∂ Tl

∂ G

)

+ (Te − Tl) +G

(

∂ Te

∂ G
−

∂ Tl

∂ G

)

. (9)

Introducing

Ue =
∂ Te

∂ G
, Ul =

∂ Tl

∂ G
(10)

into Eqs. (8) and (9) one can obtain

dCe(Te)

dTe
Ue

∂ Te

∂ t
+ Ce(Te)

∂ Ue

∂ t

=
∂

∂ x

[(

∂ λe(Te, Tl)

∂ Te
Ue +

∂ λe(Te, Tl)

∂ Tl
Ul

)

∂ Te

∂ x
+ λe(Te, Tl)

∂ Ue

∂ x

]

− (Te − Tl) − G (Ue − Ul) (11)

and

Cl
∂ Ul

∂ t
= λl

∂2Ul

∂ x2
+ (Te − Tl) +G (Ue − Ul) . (12)

After some mathematical operations one obtains

Ce(Te)
∂ Ue

∂ t
=

∂

∂ x

(

λe
∂ Ue

∂ x

)

−G (Ue − Ul)

+
∂

∂ x

[

(λe,eUe + λe,lUl)
∂ Te

∂ x

]

− (Te − Tl)− Ce,eUe
∂ Te

∂ t
,

Cl
∂ Ul

∂ t
= λl

∂2Ul

∂ x2
+ (Te − Tl) +G (Ue − Ul) ,

(13)

where

Ce,e =
dCe(Te)

dTe
, λe,e =

∂ λe(Te, Tl)

∂ Te
, λe,l =

∂ λe(Te, Tl)

∂ Tl
. (14)
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Additionally, the differentiation of boundary and initial conditions with respect to the coupling
factor G gives

∂ qe(0, t)

∂ G
=

∂ qe(L, t)

∂ G
=

∂ ql(0, t)

∂ G
=

∂ ql(L, t)

∂ G
= 0, (15)

t = 0: Ue(x, 0) = Ul(x, 0) = 0. (16)

Summing up, the equations (13) supplemented by boundary and initial conditions (15), (16) create
the additional problem connected with the sensitivity analysis of temperature fields Te and Tl with
respect to the coupling factor G.
In the case of shape parameter L (film thickness) the concept of material derivative [4, 6] is used

DT

DL
=

∂T

∂L
+

∂T

∂x
v, (17)

where v = v(x,L) is the velocity associated with design parameter L.
From Eq. (17) it follows that

D

DL

(

∂T

∂x

)

=
∂

∂L

(

∂T

∂x

)

+
∂2T

∂x2
v =

∂

∂x

(

∂T

∂L

)

+
∂2T

∂x2
v (18)

and

∂

∂x

(

DT

DL

)

=
∂

∂x

(

∂T

∂L
+

∂T

∂x
v

)

=
∂

∂x

(

DT

DL

)

+
∂2T

∂x2
v +

∂T

∂x

∂v

∂x
(19)

therefore

D

DL

(

∂T

∂x

)

=
∂

∂x

(

DT

DL

)

−
∂T

∂x

∂v

∂x
. (20)

In similar way the following can be achieved:

D

DL

(

∂T

∂t

)

=
∂

∂t

(

DT

DL

)

. (21)

Using formula (20) one can obtain

D

DL

(

∂2T

∂x2

)

=
D

DL

[

∂

∂x

(

∂T

∂x

)]

=
∂

∂x

[

D

DL

(

∂T

∂x

)]

−
∂2T

∂x2
∂v

∂x
(22)

and next

D

DL

(

∂2T

∂x2

)

=
∂

∂x

[

∂

∂x

(

DT

DL

)

−
∂T

∂x

∂v

∂x

]

−
∂2T

∂x2
∂v

∂x

=
∂2

∂x2

(

DT

DL

)

− 2
∂2T

∂x2
∂v

∂x
−

∂T

∂x

∂2v

∂x2
. (23)

It is also easy to check that the calculations of material derivative of the product or quotient of
two functions are the same as in the case of ordinary derivatives.
The formulas presented above are necessary to accomplish the shape sensitivity analysis. So,

differentiation of equations (1) and (2) with respect to the shape parameter L gives [8]

DCe(Te)

DL

∂Te

∂t
+Ce(Te)

D

DL

(

∂Te

∂t

)

=
D

DL

[

∂

∂x

[

λe(Te, Tl)
∂Te

∂x

]]

−G

(

DTe

DL
−
DTl

DL

)

+
DQ

DL
(24)
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and

Cl
D

DL

(

∂Tl

∂t

)

= λ0
D

DL

(

∂2Tl

∂x2

)

+G

(

DTe

DL
−
DTl

DL

)

. (25)

Using the rules of material derivative calculations, the first term on the right-hand side of Eq. (24)
takes the form

D

DL

[

∂

∂x

[

λe(Te, Tl)
∂Te

∂x

]]

=
∂

∂x

[

Dλe(Te, Tl)

DL

∂Te

∂x

]

+
∂

∂x

[

λe(Te, Tl)
∂

∂x

(

DTe

DL

)]

− 2
∂

∂x

[

λe(Te, Tl)
∂Te

∂x

]

∂v

∂x
− λe(Te, Tl)

∂Te

∂x

∂2v

∂x2
. (26)

From Eq. (1) one obtains

∂

∂x

[

λe(Te, Tl)
∂Te

∂x

]

= Ce(Te)
∂Te

∂t
+G (Te − Tl)−Q. (27)

When we introduce Eq. (27) into (26), Eq. (24) takes the following form:

Ce(Te)
∂Ve

∂t
=

∂

∂x

[

λe(Te, Tl)
∂Ve

∂x

]

−G (Ve − Vl)

+
∂

∂x

[

Dλe(Te, Tl)

DL

∂Te

∂x

]

− 2

[

Ce(Te)
∂Te

∂t
+G (Te − Tl)−Q

]

∂v

∂x

− λe(Te, Tl)
∂Te

∂x

∂2v

∂x2
+
DQ

DL
−
DCe(Te)

DL

∂Te

∂t
, (28)

where Ve = DTe/DL, Vl = DTl/DL are the sensitivity functions.
In similar way the differentiation of Eq. (25) has been done

Cl
∂Vl

∂t
= λ0

∂2Vl

∂x2
+G (Ve − Vl)− 2

(

Cl
∂Tl(x, t)

∂t
−G (Te − Tl)

)

∂v

∂x
− λ0

∂Tl

∂x

∂2v

∂x2
. (29)

Differentiation of equations (4) and (5) leads to the following conditions:


















x = 0 : λe(Te, Tl)
∂Ve

∂x
+ λ0
Dλe(Te, Tl)

DL

∂Te

∂x
= 0

x = L : −λe(Te, Tl)
∂Ve

∂x
− λ0
Dλe(Te, Tl)

DL

∂Te

∂x
= 0

(30)

and


















x = 0 : λ0
∂Vl

∂x
= 0

x = L : −λ0
∂Vl

∂x
= 0

(31)

while

t = 0 : Ve (x, 0) = Vl (x, 0) =
DTp

DL
= 0 . (32)

To complete the shape sensitivity analysis of electron and lattice temperatures with respect to
the thickness L, the following definition of velocity associated with design parameter L can be
accepted:

v =
x

L
, 0 ≤ x ≤ L. (33)
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4. METHOD OF SOLUTION

The basic problem described in Sec. 2 and the additional problems connected with the sensitivity
analysis presented in Sec. 3 have been solved using the explicit scheme of finite difference method [3].
It should be pointed out that the structures of basic equations (1), (2) and additional equations
(13), (28), (29) connected with the sensitivity analysis are similar. So, these equations for k = 1, 2, 3
can be written in the form

Ce(Te)
∂Wek

∂t
=

∂

∂x

[

λe(Te, Tl)
∂Wek

∂x

]

+ Zek (34)

and

Cl
∂Wlk

∂t
= λl

∂2Wlk

∂x2
+ Zlk, (35)

where We1 = Te, Wl1 = Tl, We2 = Ue, Wl2 = Ul, We3 = Ve, Wl3 = Vl, while

Ze1 = −G (Te − Tl) +Q, Zl1 = G (Te − Tl) (36)

and

Ze2 = −G (Ue − Ul) +
∂

∂ x

[

(λe, eUe + λe, lUl)
∂ Te

∂ x

]

− (Te − Tl)− Ce,eUe
∂ Te

∂ t
,

Zl2 = (Te − Tl) +G (Ue − Ul) ,

(37)

Ze3 = −G (Ve − Vl) +
∂

∂ x

[

Dλe(Te, Tl)

DL

∂ Te

∂ x

]

−
2

L

[

Ce(Te)
∂ Te

∂ t
+G (Te − Tl)−Q

]

−
DQ

DL
−
DCe(Te)

DL

∂ Te

∂ t
, (38)

Zl3 = G (Te − Tl) .

A time grid

t0 < t1 < ... < tf−2 < tf−1 < tf < ... < tF < ∞ (39)

with constant time step ∆t is introduced and a mesh with constant step h is used.
For transition tf−1 → tf the following approximation of Eqs. (34) and (35) is proposed:

Cf−1
ei

W f
ek,i −W f−1

ek,i

∆t
=

1

h

[

λf−1
ek,i+0.5

W f−1
ek,i+1 −W f−1

ek,i

h
− λf−1

ek,i−0.5

W f−1
ek,i −W f−1

ek,i−1

h

]

+ Zf−1
ek,i (40)

and

Cl

W f
lk,i −W f−1

lk,i

∆t
= λl

W f−1
lk,i−1 − 2W f−1

lk,i +W f−1
lk,i+1

h2
+ Zf−1

lk,i . (41)

From Eqs. (40) and (41) results that

W f
ek,i = W f−1

ek,i



1−

(

λf−1
ek,i + λf−1

ek,i+1

)

∆t

2h2Cf−1
ei

−

(

λf−1
ek,i + λf−1

ek,i−1

)

∆t

2h2Cf−1
ei





+W f−1
ek,i+1





(

λf−1
ek,i + λf−1

ek,i+1

)

∆t

2h2Cf−1
ei



+W f−1
ek,i−1





(

λf−1
ek,i + λf−1

ek,i−1

)

∆t

2h2Cf−1
ei



+ Zf−1
ek,i

(

∆t

Cf−1
ei

)

(42)
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and

W f
lk,i = W f−1

lk,i

(

1−
2λl∆t

h2Cl

)

+W f−1
lk,i+1

(

λl ∆t

h2Cl

)

+W f−1
lk,i−1

(

λl∆t

h2Cl

)

+ Zf−1
lk,i

(

∆t

Cl

)

. (43)

It should be pointed out that the stability criteria should be fulfilled, this means that

1−

(

λf−1
ek,i + λf−1

ek,i+1

)

∆t

2h2Cf−1
ei

−

(

λf−1
ek,i + λf−1

ek,i−1

)

∆t

2h2Cf−1
ei

≥ 0,

1−
2λl∆t

h2Cl
≥ 0.

(44)

5. RESULTS OF COMPUTATIONS

At first, the gold film of thickness L = 100 nm (1 nm = 10−9 m) is considered. The layer is
subjected to a short-pulse laser irradiation (R = 0.93, I0 = 13.4 J/m2, tp = 0.1 ps, δ = 15.3 nm).
Thermophysical parameters are as follows: λl = λ0, λe = λ0Te/Tl, where λ0 = 315 W/(mK),
Cl = 2.5 MJ/(m3K), where γ = 62.9 J/(m3K2), G = 2.6 · 1016 W/(m3K) [5]. Initial temperature
equals to Tp = 300 K.
The problem is solved using finite difference method under the assumption that ∆t = 0.00001 ps

and h = 1 nm. Figure 2 shows the comparison of numerical results for thin gold film (x = 0) with
experimental data presented in [2]. The line and the symbols represent calculated temperature of
electrons and experimental data, respectively. One can see that the obtained results and measured
temperatures are in good agreement.

Fig. 2. Comparison of calculated electron temperature with experimental data for 100 nm gold film.

Knowledge of sensitivity functions Ue, Ul, Ve, Vl allows, among others, to estimate the temper-
ature changes due to the parameters G and L perturbations, this means

∆Te (x, t, 2∆G) = 2Ue (x, t,G)∆G, ∆Tl (x, t, 2∆G) = 2Ul (x, t,G)∆G, (45)

∆Te (x, t, 2∆L) = 2Ve (x, t, L)∆L, ∆Tl (x, t, 2∆L) = 2Vl (x, t, L)∆L. (46)

In Figs. 3 and 4 the changes of temperatures Te, Tl due to the changes of parameters G(∆G= 0.1G)
and L (∆L= 0.1L) are presented.
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Fig. 3. History of functions ∆Te (0, t, 2∆G) and ∆Tl (0, t, 2∆G).

Fig. 4. History of functions ∆Te (0, t, 2∆L) and ∆Tl (0, t, 2∆L).

6. CONCLUSIONS

Thin metal film subjected to the laser pulse has been considered. The process analyzed was de-
scribed by the two-temperature parabolic model created by the system of two coupled Fourier
equations supplemented by the boundary and initial conditions. The changes of electron and lat-
tice temperatures due to the perturbations of film thickness L and coupling factor G have been
discussed. For this purpose, the direct approach of sensitivity analysis has been used. As it can be
seen in Fig. 3, the change of coupling factor G in the range from G−∆G to G+∆G, where ∆G
corresponds to 10% of the basic value of the parameter G, resulted in a maximum change of electron
temperature equal to 82 K and the maximum change of lattice temperature equal to 6.2 K. The
variation of the film thickness L from L−∆L to L+∆L caused the maximum change of electron
temperature equal to 4.1 K and maximum change of lattice temperature equal to 0.068 K (Fig. 4).
Thus, the perturbation of coupling factor G causes essentially greater temperature changes than
the perturbation of film thickness L. In addition, the changes of these parameters affected mainly
on electrons temperature, especially at the stage of initial steps of heating process.

It should be pointed out that the determination of temperatures and sensitivity functions allows
one, among others, to identify the film thickness L and the parameter G using the gradient methods
under the assumption that the temperature history on the irradiated surface is known. The other
application of sensitivity functions is connected with the transformation of basic solution on the
solution corresponding to other parameters of the process considered (the Taylor formula should be
applied). Sensitivity analysis methods presented in this article may be used to estimate the changes
in temperature caused by the changes in other parameters, for example, the thermal conductivity
or the volumetric specific heat of lattice.



Application of sensitivity analysis in microscale heat transfer 121

ACKNOWLEDGEMENTS

The paper is a part of projects BK-214/RMT-4/2012 and 2012/05/B/ST8/01477.

REFERENCES

[1] M.A. All-Nimr. Heat transfer mechanisms during short duration laser heating of thin metal films. International
Journal of Thermophysics, 18(5): 1257–1268, 1997.

[2] J.K. Chen, J.E. Beraun. Numerical study of ultrashort laser pulse interactions with metal films. Numerical Heat
Transfer, Part A, 40: 1–20, 2001.

[3] W. Dai, R. Nassar. A compact finite difference scheme for solving a one-dimensional heat transport equation at
the microscale. Journal of Computational and Applied Mathematics, 132: 431–441, 2001.

[4] K. Dems, B. Rousselet. Sensitivity analysis for transient heat conduction in a solid body. Structural Optimization,
17: 36–45, 1999.

[5] E. Kannattey-Asibu Jr. Principles of laser materials processing. John Wiley & Sons, Inc., Hoboken, New Jersey,
2009.

[6] M. Kleiber. Parameter sensitivity in nonlinear mechanics. J. Wiley & Sons Ltd., London, 1997.
[7] Z. Lin, L.V. Zhigilei. Electron-phonon coupling and electron heat capacity of metals under conditions of strong
electron-phonon nonequilibrium. Physical Review, B77: 075133-1-075133-17, 2008.

[8] E. Majchrzak, M. Jasiński, G. Kałuża. Sensitivity analysis of solidification with respect to the mould thickness.
Archives of Foundry, 3(9): 305–310, 2003.

[9] E. Majchrzak, J. Poteralska. Numerical analysis of short-pulse laser interactions with this metal film. Archives
of Foundry Engineering, 10(4): 123–128, 2010.

[10] T.Q. Qiu, C.L. Tien. Femtosecond laser heating of multi-layer metals – I Analysis. International Journal of Heat
and Mass Transfer, 37: 2789–2797, 1994.

[11] Z.M. Zhang. Nano/microscale heat transfer. McGraw-Hill, 2007.


