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In the paper the stationary 2D inverse heat conduction problems are considered. To obtain an approximate
solution of the problems three variants of the FEM with harmonic polynomials (Trefftz functions for
Laplace equation) as base functions were used: the continuous FEMT, the non-continuous FEMT and the
nodeless FEMT. In order to ensure physical sense of the approximate solution, one of the aforementioned
physical aspects is taken into account as a penalty term in the functional, which is to be minimized in order
to solve the problem. Three kinds of physical aspects that can smooth the solution were used in the work.
The first is the minimization of heat flux jump between the elements, the second is the minimization
of the defect of energy dissipation and third is the minimization of the intensity of numerical entropy
production. The quality of the approximate solutions was verified on two test examples. The method was
applied to solve inverse problem of stationary heat transfer in a rib.

1. INTRODUCTION

The key idea of the solving functions’ method is to find the functions (polynomials) satisfying a given
differential equation. Then the linear combination of these functions is fitted to the governing initial
and boundary conditions. In this sense it is a variant of the Trefftz method [19, 20]. The method
originates from the paper [18|, where one-dimensional heat-conduction problems in the Cartesian
coordinate system were solved. The method is continued by the contributions [9, 11|, describing
heat polynomials for the two- and three-dimensional cases. Application of the heat polynomials in
polar and cylindrical coordinates is shown in the papers [7, 8, 10]. The applications of this method
for inverse heat conduction problems are described in [1, 5-11]. The paper [1] contains a highly
interesting idea of using heat polynomials (Trefftz functions) as a new type of base functions for
Finite Element Method (FEMT).

All papers described above refer to the heat conduction equation. The work [2] deals with a lot of
other cases, involving other differential equations such as the Laplace, Poisson and Helmholtz equa-
tion. The one-dimensional wave equation is solved there as well. The two- and three-dimensional
wave polynomials are described in [12-14, 16, 17]. The papers [3, 4] describe energetic approach to
direct and inverse heat conduction problems with Trefftz functions used in FEMT. These papers
contain the usage of harmonic functions in non - continuous FEMT method and physical regular-
ization for inverse problems for stationary heat conduction. The paper presented here relates to
these articles. The authors propose a similar physical regularization in a new approach — nodeless
FEMT — and compares all three approaches. The nodeless Finite Elements Method with Trefftz
base functions for heat conduction problems has not been used so far. The test examples presented
here show that this approach can lead to better results. The nodeless FEMT was used in the last
paragraph to solve inverse problem of stationary heat transfer in a rib.
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2. PROBLEM DESCRIPTION

Let us consider a 2D stationary inverse heat conduction problem described by the mathematical
model

e Laplace equation:
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e boundary conditions:
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when a* +b* # 0 and ¢? + d? # 0. Additionally we know temperature in discrete K points inside
of domain in distance ¢ from border z = 1 (temperature internal response),
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We are looking for temperature distribution in the whole domain and in particular the temper-
ature and heat flux for 2 = 1. If d; = 0 we have discrete, direct problem. -

By solving the problem described by equations (1)—(5) we will use three variants of FEM with
Trefftz base functions (FEMT). In each of these cases well known harmonic polynomials are used.

We have two sets of these polynomials, which are a real and imaginary part of (“L%L
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We denote vy = 1, vo = Fy, v3 = Gy, v4 = Fy, v5 = Go, .... All harmonic polynomials v; fulfill

the Laplace equation (1) identically (Trefftz functions). The linear combinations of these functions
satisfy Eq. (1) as well. Harmonic polynomials will be used further as base functions for several
variants of FEMT.

2.1. Variants of FEMT

In all variants of FEMT considered here, the domain (2 is divided into subdomains 2; , where we
take linear combination of harmonic polynomials as an approximation of the solution,

Ti(a,y) ~ T, y) = o, (8)

Continuous and non-continuous FEMT need to be given base functions, which is not necessary in
nodeless FEMT. To obtain FEMT base functions we follow analogously as in [1, 2]. We assume
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temporarily that for element 2; the temperatures 71, ..., Ty in nodes P, = (z1, y1),..., Py =
(zn, yn) are known. The temperature in element (2; is approximated by Eq. (8). The continuity
of the solution in nodes of elements leads to equations (omitting index j)

'Ul(Pl) UQ(Pl) UN(Pl) Ci Tl
'l)1(P2) UQ(PQ) UN(PH) C2 = T2
vl(..PN) vg(l'DN) ’UN(.PN) c;\/ T.N
vIlC] = [T],
hence
[C] = v]7H[T] = [V][T],
1e.

N
ey =3 Vol
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Substituting ¢, into Eq. (8) we have
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Functions (9) have properties:

e fulfilling Laplace equation:
A¢'i = Oa

e interpolation:

e
wB)={0 177

It means that we can control the temperature in the nodes. To find a solution (coefficients of linear
combination) we build a functional depending on the variant of method. In continuous FEMT
we assume equality of temperature in common nodes between the elements. The condition of the
temperature continuity in nodes may be omitted and then we obtain non-continuous FEMT |3]. If
the continuity of temperature in the nodes is omitted, then another condition (conditions) has to
be introduced in order to ensure the physical sense of the solution. We have to take into account the
minimization of inaccuracy (in mean-square sense) of the temperatures in nodes between elements.
In the nodeless FEMT the temperature in subdomain 2; is approximated by Eq. (8). Here the linear
combination does not have the property of interpolation. Therefore we minimize the inaccuracy (in
mean-square sense) of the temperature between elements (on the common border). Additionally,
in all variants of FEMT we minimize the difference between the approximate solution and given
conditions (see the examples).
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2.2. Energetic approach

We take the physical aspects of the problem into consideration in order to improve the solution.
Let us denote I; the common borders between the elements. We can add terms in the functional
described in Section 2.1 [3]:

e defect of heat flux
P s a0
dri= / G, —q_) drI, 10
£, o) e

where 5 e 5_ denote the approximation of heat flux on two sides of the border 5,

e defect of entropy production

=3 [ (ﬁ T) = (1)

where ir : T_ denotes the approximation temperature on two sides of the border I,

e energy dissipation
e e A
g = Z/ (73, —1nT_q_) dr. (12)
i 2

The additional terms improve the solution. Ciatkowski [4] proved that there is no difference which
term we add to the functional — all of them are equivalent and lead to similar results. In fact,
the results are similar but not identical. The differences occur especially in numerical practice.
The minimization of entropy production or energy dissipation defect leads to nonlinear system of
equations, which is more difficult to solve. Nevertheless, the usage of the physical aspects of the
problem improves the accuracy of solution (especially for inverse problems).

2.2.1. Error of approximation

Before the method will be applied for practical problems, it should be checked on test problems. If
the exact solution 7'(z,y) is known, the error of approximation can be calculated. In order to prove
the quality of the approximation we calculate the errors:

B = 2
6Ly = |22 - 100[%)], (13)
/ (T(z,4))2d02
L 9]
1
o -~ 2 oT T, T (z 4 a7 il T (z,1 é 2
e /Q[(m,y)—T(w)) + () _ Tea)) () éﬂ)}dﬂ
SH! = : . . -100[%).
T (z, « T,
: [ | @@+ (Z)" + (%)’ a
(14)

The first shows the accuracy of the temperature approximation. The second takes the error of
heat flux approximation into account as well. The error described by Eq. (14) is very important,
especially when we approximate the solution by polynomials. The polynomials undulate and when
we differentiate them the error of the approximation of heat flux can enlarge.
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3. EXAMPLES

In the case of inverse problems we do not know the exact solution of the problems. Therefore, the
usability of methods presented here should be checked on the test problems, when all conditions are
known. We consider two test examples.

3.1. The first test example

Let us consider a 2D stationary inverse heat conduction problem described by Eq. (1) and the
conditions

a—T%Z = hifgy=e¥¥e ¥ (15)
TED — (@) =0, (10
dTg;’ 5 = ha(z) = (cosz +sinz)(e — e 1), ‘ (17)

Additionally, we know the temperature in eight discrete points arranged uniformly inside the domain
in distance d;, from border x = 1 (internal temperature responses),

T(l_dbvy'b)ZT’H i=1,...,8. (18)
The temperature in these points is simulated from the exact solution
T(z, y) = fcos o+ sinx)(ef + e7Y).

We solve the problem described by Eq. (1) and conditions (15)—(18) by using the continuous FEMT,
the non-continuous FEMT and the nodeless FEMT dividing domain (2 (by straight lines 2 = 0.5
and y = 0.5) into four subdomains £2; = {(2,y) € 2 : 3¢ <z < Tyj, Ygj S Y < Vs } (see Fig. 1). In
each element, thirteen harmonic polynomials were used. For each method mentioned above we take
three kinds of functional into consideration: the minimizing defect of heat flux, entropy and energy
dissipation between the elements. For example for nodeless FEMT and for minimizing of energy
dissipation (12) this functional has the form

2 [ aToy) 9T (,0) :
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where I7;; are common borders between elements. The functionals for other cases are similar.
Flgure 2 shows the error (13) (dependent on the distance d;) of approximation with using min-
imization of the defect of heat flux between elements. Figure 3 shows the error (13) (dependent
on the distance d;) of approximation with using minimization of the defect of entropy production
between elements. Figure 4 shows the error (13) (dependent on distance dj) of approximation with
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Fig. 1. Division of domain {2 and localization
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Table 1. The error §L2[%] dependent on distance ds

dyp Heat flux Entropy Energy dissipation

Nodeless Con N-Con | Nodeless Con N-Con | Nodeless Con N-Con
0 0.000006 0.00019 0.00022 | 0.000004 0.00021 0.00020 | 0.000005 0.00016 0.00019
0.1 | 0.000005 0.00011 0.00012 | 0.000004 0.00014 0.00013 | 0.000007 0.00010 0.00012
0.2 | 0.000006 0.00011 0.00011 | 0.000004 0.00011 0.00011 | 0.000004 0.00013 0.00015
0.3 | 0.000020 0.00013 0.00014 | 0.000014 0.00010 0.00011 | 0.000016 0.00015 0.00030
0.4 | 0.000042 0.00019 0.00030 | 0.000026 0.00014 0.00019 | 0.000032 0.00017 0.00050
0.5 | 0.000043 0.00028 0.00038 | 0.000028 0.00032 0.00040 | 0.000034 0.00020 0.00053
0.6 | 0.000104 0.00063 0.00102 | 0.000038 0.00066 0.00118 | 0.000087 0.00033 0.00059
0.7 | 0.000125 0.00076 0.00119 | 0.000050 0.00085 0.00160 | 0.000113 0.00037 0.00061
0.8 | 0.000135 0.00082 0.00130 | 0.000066 0.00101 0.00198 | 0.000127 0.00041 0.00063
0.9 | 0.000139 0.00085 0.00135 | 0.000073 0.00112 0.00220 | 0.000132 0.00043 0.00065
1 0.000140 0.00086 0.00137 | 0.000075 0.00114 0.00225 | 0.000134 0.00045 0.00066

using minimization of the defect of energy dissipation between elements. The total error of temper-
ature approximation observed in Figs. 24 is very small even for large values of d;, . Generally, these
figures suggest that all functionals (minimization of heat flux, entropy and energy dissipation) lead
to similar results for d; < 0.5. It is the confirmation of theoretical results obtained in [4] (in this
paper the nodeless FEMT were not considered). But for dj > 0.5 the best results are given by the
minimization of energy dissipation between the elements. The calculations showed clearly that the
nodeless FEMT leads to far better results than the continuous and the non-continuous FEMT.

Table 1 contains the results presented in Figs. 2—4 which show that the approximation of tem-
perature is very good both for direct and inverse problem (the biggest error observed in Table 1
does not cross 0.0025%). On the whole, in the inverse problem the error increases when the distance
of internal temperature response from the border x = 1 is increased. In the cases considered above,
even for d, = 1 (two boundary conditions on the border 2 = 0 and no condition for x = 0) the error
is very small. Generally, the quality of approximation improves when we take more polynomials
in Eq. (8) and more subdomains {2; . In the example presented here four subdomains and thirteen
polynomials are sufficient to obtain the error (for temperature in the whole domain) below O 0025%
for all methods and smaller than 0.00015% for the nodeless FEMT.
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Table 2. The error 6L2[%)] in dependence on the distance d,,

dp Heat flux Entropy Energy dissipation

Nodeless Con N-Con | Nodeless Con N-Con | Nodeless Con N-Con
0 0.000025 0.00023 0.00027 | 0.000026 0.00017 0.00020 | 0.000021 0.00027 0.00030
0.1 | 0.000023 0.00084 0.00091 | 0.000026 0.00045 0.00050 | 0.000021 0.00029 0.00030
0.2 | 0.000056 0.00230 0.00233 | 0.000047 0.00152 0.00172 | 0.000042 0.00092 0.00088
0.3 | 0.000171 0.00338 0.00316 | 0.000117 0.00267 0.00292 | 0.000094 0.00261 0.00164
0.4 | 0.000268 0.00471 0.00337 | 0.000154 0.00369 0.00333 | 0.000112 0.00498 0.00311
0.5 | 0.000286 0.00584 0.00334 | 0.000160 0.00470 0.00339 | 0.000112 0.00516 0.00338
0.6 | 0.000288 0.00834 0.00458 | 0.000172 0.00759 0.00503 | 0.000124 0.00568 0.00385
0.7 | 0.000293 0.00894 0.00649 | 0.000175 0.00851 0.00776 | 0.000130 0.00737 0.00490
0.8 | 0.000304 0.00918 0.00865 | 0.000177 0.00887 0.01120 | 0.000129 0.01090 0.00733
0.9 | 0.000475 0.00968 0.01030 | 0.000190 0.00919 0.01370 | 0.000193 0.01380 0.00981
1L 0.001460  0.16600 0.20100 | 0.000728 0.12700 0.16000 | 0.000399 0.02310 0.01810

The results presented on figures 6-8 contains Table 2. The results presented in Table 2 show that
the approximation of temperature is very good both for direct and inverse problem. Even for dj, = 1
the error is smaller than 0.21% for all methods and less than 0.0015% for the nodeless FEMT.

To sum up, the test examples lead to three important conclusions. The approximate solution of
stationary inverse heat conduction problem is very good (temperature and heat flux). All functionals
(minimization of heat flux, entropy and energy dissipation) leads to similar results. The nodeless
FEMT leads to far better results then the continuous and the non-continuous FEMT.

The second test example presented here refers to the paper [3]. The results presented in this paper
are similar for continuous and the non-continuous FEMT, while the results for nodeless FEMT are
much better — this is the advantage of the method proposed here.

3.3. Inverse problem of stationary heat transfer in a rib

In the paper [15], the inverse heat conduction problem for stationary heat transfer in a rib was
solved. There the harmonic polynomials were used but the domain was not divided into subdomains
(solution in whole domain). Of course the energetic approach was not used. The same problem was
solved in this section.

Let us consider a 2D stationary inverse heat conduction problem in a rectangular rib 2 =
{(z,y) € (0,0.08) x (0,0.003)} described by the Laplace equation (1) and the conditions

TO,y) =29, (23)
9T(0.08,y)
OBy (24)
(= 0) . °
 Bhion o (%)
Tx;, 0) © O 2 Cg =yl 6 (26)

The temperature in discrete points 7} was measured with THV 550 thermovision camera. We
are looking for a temperature distribution in the whole domain and in particular the temperature
and heat flux for y = 3mm. On the border y = 3mm there is no condition but for y = 0 there are
two conditions (inverse problem). Here the domain was divided into four subdomains and thirteen
harmonic polynomials in each element were used (analogously as in test examples). The nodeless
FEMT with minimization of the defect of heat flux between the elements (see Eq. (10)) was applied.
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Figure 9 shows the comparison of the temperature distribution for y = 0 and for y = 3mm
obtained in the paper [15] (Fig. 9a) and with the nodeless FEMT (Fig. 9b). The pictures had to be
scanned and so that their quality is low. The approximation is similar in both cases.

Figure 10 shows comparison of the component Q%?ﬂ of the heat flux distribution for y = 0

and y = 3mm obtained in the paper [15] (Fig. 10a) and with the nodeless FEMT (Fig. 10b). The

approximations of %Z’y) for y = 0 in both cases are very good. But for y = 3 mm the approximation

in Fig. 10b is more physical than that in Fig. 10a. For y = 3 mm the component 6—7}%’—@ of the heat

flux should be negative. In Fig. 10b the distribution of 8—7}()@ undulates more. It is especially visible
near the end of the rib = 80 mm. Moreover, comparing the heat flux distribution in Fig. 10 with
the temperature distribution in Fig. 9 we can observe that the rise of the curve in Fig. 10a for
x < 20mm is too fast — not proportional to the decreasing of the temperature. Summarizing the
energetic approximation improved the physical aspects of solution.

CONCLUSIONS

As a rule, the inverse problems are ill-posed and difficult to solve. In this paper a new approach was
proposed — the nodeless Finite Elements Method with harmonic polynomials as base functions.
Additionally, the energetic approach was taken into consideration — minimization of the defect of
the heat flux, entropy production and energy dissipation. The examples presented here show that all
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functionals (minimization of heat flux, entropy and energy dissipation) lead to similar results. The
calculations showed clearly that the nodeless FEMT leads to far better results then the continuous
and the non-continuous FEMT. The errors obtained here were very small even for large distance of
internal temperature response from the border 2 = 1. It means that the method proposed here is
suitable for solving direct and inverse stationary heat conduction problems.
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