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The main purpose of this paper is the investigation of the boundary effect in bending problem of per-
forated plates and its influence on the effective flexural rigidity. The considered strip plate is loaded by
constant uniformly distributed load and has square penetration pattern. The boundary value problem
for determination of deflection repeated element of structure is solved by means of boundary collocation
method with a use of the special purpose Trefftz functions. These functions fulfil exactly not only gov-
erning equation but also boundary conditions on holes and some symmetry conditions. The number of
perforations is discussed on effective rigidity.

Keywords: Trefftz method, special purpose Trefftz functions, perforated plate, effective flexural rigidity

1. INTRODUCTION

One of the elements of construction used in multiple branches of the modern technologies is the
perforated plate with a large number of holes, placed uniformly in a square or triangular array. The
problem of flexural rigidity of the perforated plates has been extensively studied in the theoretical
and experimental fashion. The most recent review of those studies can be found in paper [9].

One of the theoretical approaches to the flexural rigidity problem introduces the homogenization
of the medium and postulates the existence of the effective elasticity constants or the effective
bending stiffness of the plate. The authors supporting this particular approach accept that the
uniformly perforated plate is infinite, so as the consequence the boundary effects are not taken
into consideration. The supporters of this concept in unison use the St. Venant’s principle. For
example, the authors of [5] use the following arguments to support their solution of the deflection
of an infinite perforated plate with square array: “Although the above condition associated with on
infinity plate may not occur always in practice, it follows from st. Venant’s principle that when the
number of perforations is large the above simplifying assumption is justified. That 18, the solution
Jor on infinite plate is applicable to a plate of finite size except in on area near the boundary of the
plate corresponding to a lateral distance equal to, say, two or three limes the pitch of the holes.”
Similar justification is found in paper [1]: “While technically the solution is valid only for plates of
infinite extent in the orthogonal plane directions having an infinite number of perforations uniformly
distributed in a square array, it is well known that such restrictions are mot necessary. It follows
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from St. Venant’s principle that the solution can be applied to a large number of holes ezpect in
a strip near the boundary the perforated portion of the plate.” :

Assuming the St. Venant’s principle one must agree that the boundary effect, although small,
depends on many factors, such as: ]

e surface ratio of perforation,

e mesh type,

e the way the plate is attached,
e type of load.

Furthermore, in a particular case, it is not known how big the boundary effect is — how many
rows of the edge perforations are affected. The answer to such a question is quite important if the
concept of homogenization is to be used for a plate with a small number of holes. In other words,
one has to determine how many holes are needed in order for the homogenization to make sense.

The main goal of this work is to present a method which allows in a fairly easy manner to
determine the boundary effect for a perforated plate. To explain the problem, a strip of plate
perforated in a square pattern, with a finite number of holes, deflected by a constant load of a fixed
value is taken into consideration. The edges of the strip are simply supported. In order to determine
the value of the strip deflection, the equation of thin plates with proper boundary conditions is
used. The boundary value problem is formulated for deflection and in the next is solved by means
of boundary collocation method with a use of the special purpose Trefftz functions [12]. By the
way two new special purpose test functions are proposed. These functions fulfil exactly not only
governing equation, what is essence of Trefftz method, but also boundary conditions on holes and
some symmetry conditions.

2. FORMULATION OF BOUNDARY VALUE PROBLEM FOR PERFORATED STRIP AND ITS
SOLUTION

2.1. Governing equation

Let’s consider a simply supported strip plate perforated in a square pattern with a finite number
M of rows of holes (Fig. 1).

The strip can have an odd number of holes (Fig. 1a) and in such a case the axis of symmetry
passes through a middle row or an even number of rows when the axis of symmetry passes in the
mid-distance between the two middle rows (Fig. 1b). The differentiation between the two cases is
important for the proposed analytical-numerical algorithm. In both cases we introduce the following
values to characterize the perforation: diameter of the holes 2a, distance between the centers of the
neighbouring holes 2b and the distance between the edge rows and a wall b. The ratio between the
diameters of the holes to the distance between the centres of the neighbouring holes is marked as

n = ¢ and its dimensionless radius of holes. This value is connected to surface ratio of penetration

of strip ¢ by the formula ¢ = %’2 It is assumed that the strip is loaded by the constant load ¢,
which influences the plate without influencing the holes. We accept as a known value the flexural

rigidity of the material of strip

Eh3

where F is the Young modulus, v is the Poisson number, and h is the plate thickness.
The governing equation for deflection of plate has the form

onss i G '
VVw—D, (2)
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Fig. 1. Perforated plate strips
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Fig. 2. Repeated element of perforated plate strip with even number of holes
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Fig. 3. Repeated element of perforated plate strip with odd number of holes

where V2 is the harmonic operator, w is the deflection of the point laying on middle plane of the
plate in the perpendicular direction to plate.

Equation (2) needs to be solved with the use of the proper boundary conditions, which depend
on the attachment mode of the strip’s edge and on the fact that the surfaces of the holes are load-
free. From an infinite strip we isolate the smallest, repeating area, which is limited by the axes of
symmetry of the strip and by the one of the edges. Such an area for the even and odd number of
rows is presented in Figs. 2 and 3, respectively. We will attempt to find the solution for Eq. (2)
within this repeating area. In order to do that we divide the repeating area into the large finite
elements. In the case of odd number of rows the number of elements equals MT“ and for the even
number of rows the number of elements equals % . For each of the elements we assume a local polar
system of coordinates (R;, ©;), so that the origin of the system lines up with the centres of the
holes, where j =1,2,..., ;v% for an odd number of rows and 7 =1,2,..., % for an even number
of rows.
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After introducing dimensionless variables

o5 LY e faea U
X]— R Y7_ b’ RJ_ b’ WJ Qb4(1—g0)7 (3)

Eq. (2) in the polar system of coordinates has the form

_|_

(a? el 1 82
An2 T B an T o55s was
OR? " R;0R; = R?06:

2
) Wj(R;, 6;) = e

A general solution of Eq. (4) has the form

4

= i—Jriqn(}zj, 6;) (5)
9 i=0

Bo(R;, 65) = Ao +'ByR] +7Co InR; +'DoR? In R;,

(R, 6)) = (YA1R; +9B, B +9C1R;* 49D, R, In R; ) cos 6,

u(Ry, 6;) = (YR} + BRI+ +IC,R:™ + D, R;™2 In R;) cos(n6y), n>?2,

j:l,?,...,M;—lforoddM, j:1,2,...,7forevenJV[

where JAg , /By, ’Cy, ..., IC,, D, are integral constants.

2.2. Boundary conditions
For determination of integral constants we have the following boundary conditions:

(a) on the free boundary (boundary of holes)

0*W; (1 ow; 1 02wj> 4

IR R, OR, | R 00°
SR for ‘Ri=mn (6)
0

1=pv. 82 1 oW, 1 RUESH
—V2W s g g=AeD ], or
OR; t Rj OR;00; <Rj 399‘) ! FETY- M,
9 i:p 1 82
Ve er e ey e
I~ oR " R;oR, T Boe}’

(b) on the lower line of symmetry

8WJ-

=0

for e j=12.. Mt or j=1,2,... 4 (7)
—d—v2W 0 TR 3
00,

(c) on the upper line of symmetry

for ¥p=1, 1 =12 M8 cor =120 M, (8)




Flexural rigidity of perforated plates by special Trefftz functions 229
(d) conditions of stitching between elements
W; =Wt
oW _ _9Wjn
0X j 0X j+1
Fw; W for X;=-1, o (@)
2 B §=11. . & g=10.... 5,
e s
e ;= — VW,
aX}v WJ an—{—l J+1 i
(e) simply supported boundary on right boundary of the first element
1% —:()
VQIW1 iy } for. X1 =1, (10)
(f) condition of symmetry on the left boundary of last element
OW(r+1)/2
O(r111)/2 o
5 for Ort1y2 =75, (11)
— VW, =0
T (M+1)/2
or
W2 -
0X nis2
a for X]\/[/Q = —1. (12)
VEWa7e =0
OX w2 e

2.3. The numerical solution

When the solution (5) is accepted, the boundary conditions (6), (7) and (11) can be fulfilled exactly
and some of the constants from Eq. (5) can be eliminated. Furthermore, if for the infinite series
we limit to @) of first expressions we obtain the following form of the solution for all the elements,

except

where

W*

for the left boundary for the odd number of rows,

Q Q
W(X)=W*+) JAF(R;, 6;,n,v)+) 'BiGi(R;, 6j,n,v) (13)
i=0 i=0
R 0 n’In R
o5 B e s ki a ) — (4 1)1 3
6101 = ) 8R 11R+12<V_1)((1/+ Yian + 3 +u),
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FO(Rja 9j77771/) i 17
Fl(Rj, @j,n,l/) — RjCOS@j,

Fu.(Rj, 6;,n,v) = [R? + 772(”_1)Rj_” (n*(n—1) + TLRJQ) cos(nO;),

(v+3)
GolR; ; Oy, ) = R§+2n2§’;f1; In Ry,
Gi(R;, B, n,v) = (R;’ - %) cos 05,
ol 05 e R?_HL = nQ”Rj_” (772 (n*(v -1 +8(v+1)) — nRjz(z/ +1)(v— 1)2) .
n(v—1)(v +3)
x cos(n 6j).

For the last element in the case of the odd number of rows, the condition (11) is fulfilled exactly
thanks to the introduction of the particular form of the solution (13):

Q Q

W(X)= W*+ > JAF(R;, 6;,n,v)+ Y ‘BiGi(R;, 6;,n,v), (14)
1=0 5=0

FO(ij @ja 777’/) = 17

Y
Fu(R;, 8;,n,v) = IiR?” + 772(2"_1)RJ._2’1E1/T’;§— (772(2n -1+ 2nR]2) cos(2n6;),
2 2(v+1)
Go(R;, 65, 0¥} = Rj + 2n 5 In R;,
GulRy, O, nv) = | RI™ 4 Ry (2”2 (n*(v-1)° +2(v+1)) _7«1332(2”“)(,,_1)2) %
n i _77777 G ] n(V—l)(V+3)

X cos(2n 6;),

Functions in Egs. (13) and (14) F,,, G,,,n = 0,1,2, .. are derived here special purpose Trefftz func-
tions. Similar functions for plate with hole was derived in paper [7], but without symmetry of
elements.

In the solution (13) and (14), JA; , /B; are constants which should be determined with the help
of the boundary conditions (8), (9), (10) and (12). Because the exact fulfilment of these conditions
seems to be somewhat problematic, we will use the boundary collocation method [8]. In order to
do that on the each segment of the boundary of unit length, we choose np equidistant collocation
(Figs. 4,5) points and assume that the appropriate boundary conditions are exactly fulfilled in those
points. Each large element has 4np of collocation points with the exception of the plate with the
odd number of perforation rods where the last strip (half of the strip) has 2np of collocation points.
In each collocation point two boundary conditions should be satisfied then 8np equations we have
for each element with exception last element for odd number of perforation rods where we have 4np
equations.

This leads us to the algebraic system of equations, where the unknowns are the undetermined
coefficients 7A; , ’B; in the solution (13) or (14). The dimension of the linear system depends on
the number of the collocation points and the number of the large elements that are taken into
consideration and equals N = 4np- M for even and odd case of rods. The coefficients obtained with
the Gauss elimination method allow determining the value of the deflection of the plate in any of
its points.
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Fig. 5. Distribution of the collocation points in element

3. MANNER OF DETERMINATION OF EFFECTIVE FLEXURAL RIGIDITY

For a non-perforated plate with infinite length and width L, loaded with a constant load ¢, we
determine the deflection as follows [10, p. 212],

e 2. sin(ay - ) _nm
w(:}’) R L f D Z a75l ) Qp = —f ) (15)

n=1

or dimensionless form

W/(X):wD'ngliM (16)

In the case of a plate with M strips, where b is width of the strip, we can assume that L = 2Mb,
thus deflection has no value,

wD M* & sin (25 - X)
W(X) e 64— > 5 (17)

n=]
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For the purpose of determination of effective flexural of perforated plate it is assumed that 1
deflection of perforated strip can be described by Eq. (17) with proper rigidity — effective flexural
rigidity. On segment 0 < X < M some number of equidistant control points are chosen. For these
points the deflection given by Eq. (17) with D = D* where D* is effective flexural rigidity, is
calculated and in the next arithmetic average this deflection is calculated as W,P"€ On the other
hand on the base of solution (13) and (14) deflection at the same control points for X coordinate
and Y = 1 are calculated. In the next the arithmetic average these deflections are calculated as

W;::gtlfe Non-dimensional flexural rigidity is calculated as

* average
Dy = e = _Wh
average *
D WTr‘eﬁtz

(18)

Such a manner of determination of non-dimensional effective flexural rigidity is based on fact
that non-dimensional deflection is proportional to flexural rigidity (see Eqs. (3) and (17)).

4. NUMERICAL EXPERIMENTS

The proposed method provides a relatively easy way to determine the deflection of the perforated
plate, with fairly high accuracy of the results thanks to verification of fulfilment of the boundary
effects on the between collocation points. For checking the accuracy of the presented Trefftz method
the calculation of the maximal value of deflection on support (Figs. 6-8) and normal derivative
deflection on the upper line of symmetry (Figs. 9-11) between collocation points is made. The error
can be accepted even though for bigger diameter of hole (above 0.85) it is increasing.

One of the purpose of this paper was answer on question related with influence of boundary
effect on effective flexural rigidity. In the Fig. 12 the effective flexural rigidity as a function of
dimensionless diameter of holes 7 for different number of rows of holes is presented. We see that the
results for 4-11 numbers of rows are similar, and only the results obtained for one, two and three
rows of perforation are different. So effective flexural rigidity doesn’t depend on the number of rows
of holes in the strip, if their number is bigger than three. Figs. 13 and 14 shows the effective flexural
rigidity as a function of number of rows of holes for different size of holes. For number of rows of
holes bigger than three the value of the effective flexural rigidity doesn’t change too much and it’s
going towards constant value. And we can expect that for a bigger number of rows it will be the
same.

Problem of effective flexural rigidity is not new in literature (see review [11]) and was considered
by many authors. Figure 15 shows the comparison of the effective flexural rigidity of perforated
plates obtained by of various author with results obtained by proposed method. One can observe

DEFLECTION ON SUPPORT FOR 1 ROW OF HOLES
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2 00005
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n

Fig. 6. Maximal value of deflection on support between collocation points for one row of holes as a function
of the diameter of hole for the different numbers of collocation points (11, 13, 15, 17, 20, and 25)
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Fig. 7. Maximal value of deflection on support between collocation points for seven rows of holes as
a function of the diameter of hole for the different numbers of collocation points
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Fig. 8. Maximal value of deflection on support between collocation points for eleven rows of holes as
a function of the diameter of hole for the different numbers of collocation points

NORMAL DERIVATIVE OF DEFLECTION ON THE UPPER LINE OF
SYMMETRY FOR 1 ROW OF HOLES /
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Fig. 9. Maximal value of normal derivative of deflection on the upper line of symmetry between collocation
points for one row of holes as a function of the diameter of hole for the different numbers of collocation points
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NORMAL DERIVATIVE OF DEFLECTION ON THE UPPER LINE OF
SYMMETRY FOR 7 ROWS OF HOLES

15
1 . =11 .
% 0.5 :i:
0 ; vl
' 05 ¢ 0.2 0.4 0.6 0.8 1 20

Fig. 10. Maximal value of normal derivative of deflection on the upper line of symmetry between collocation
points for seven rows of holes as a function of the diameter of hole for the different numbers of collocation
points

NORMAL DERIVATIVE OF DEFLECTION ON THE UPPER LINE OF
SYMMETRY FOR 11 ROWS OF HOLES
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Fig. 11. Maximal value of normal derivative of deflection on the upper line of symmetry between collocation
points for eleven rows of holes as a function of the diameter of hole for the different numbers of collocation
points
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Fig. 12. The effective flexural rigidity as a function of the diameter of holes E for the different numbers of
rows of holes (1-11)
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Fig. 13. The effective flexural rigidity as a function of the number of rows of holes M for different size of

holes (0.05-0.45)
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Fig. 14. The effective flexural rigidity as a function of the number of rows of holes M for different size of
holes (0.5-0.9)
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Fig. 15. Comparison non-dimensional effective flexural rigidity of the obtained results for one and eleven
rods of perforation with results from literature [2—4, 6, 9].
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~ that the difference between our results for strips with one and eleven rows of perforation is smaller
then differences between results another authors on the base different methods.

5. CONCLUSIONS

The use of the Trefftz method and the special purpose Trefftz functions allows an easy and exact
determination of the deflection of a perforated plate. These functions fulfil exactly the differential
equation and part of the boundary conditions in “large finite elements” associated with each hole.
The effective flexural rigidity of the perforated strip treated as a strip without perforation can be
easily determine by calculating the average deflection of the perforated plate. The effective flexural
rigidity doesn’t depend on the number of rows of holes in the strip, if there are at least three
rows present. The proposed mode of determining the effective flexural rigidity doesn’t make sense
for a large (close to maximal) ratio of perforation. Proposed method of determination of flexural
rigidity is highly accurate compared with some theoretical method from literature.
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