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The problem on proper and forced vibrations of the loosely leant rectangular orthotropic plate with
massive circular inclusion is considered in the paper. The flexure of the plate is described by modified
equations of Timoshenko’s theory of plates. Numerical solution of the problem is found by the indirect
method of boundary elements based on the sequential approach to constructing generalized functions and
on collocation method. The problem can be generalized on the case of arbitrary located inclusion and
the arbitrary number of them. The influence of the mass of the massive circular inclusion on the proper
frequencies of the plate is investigated.

1. INTRODUCTION

The problem of vibration of plates with different kinds of stiffeners and the concentrated mass
is rather widely considered in science. In the articles of C.G. Boay a free vibration analysis of
rectangular plates carrying a concentrated mass is analysed where the deflection of the plate is
postulated by a multi-term trigonometric series function and the Ritz approach and Rayleigh-energy
method is applied to rectangular plates with various edge support combinations of clamp and simple
support conditions [1, 2]. In the work of B.P. Shastry and G. Venkateswara Rao free vibration of
plates with arbitrary oriented stiffeners are studied using high precision plate bending and stiffener
elements for both simply supported and clamped boundary conditions [6]. In the work of D. Zhou
and Tianjian Ji the vibratory characteristics of rectangular plates attached with continuously and
uniformly distributed spring-mass in a rectangular region are studied and the Ritz—Galerkin method
is used to derive the approximate solution when the spring-mass is distributed on part the plate by
using the Chebyshev polynomial series to construct the admissible functions [9]. In the paper of N. Li
and D.J. Gorman the problem of free vibration of simply supported rectangular plates with internal
line support along diagonals is considered and here fore the solution is used the approach where the
line supports are replaced by multi point support [3]. The exact approach for free vibration analysis
of rectangular isotropic plates with line-concentrated mass and elastic line-support is presented in
the paper of O.S. Li [4].

2. MODIFIED EQUATIONS OF THE TIMOSHENKO’S THEORY OF PLATES

Mathematical model of the orthotropic plate of Timoshenko’s type [5] that take into consideration
the normal component of the inertial force is represented by the equilibrium equations
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and physical equations
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Eq', E]g, Gij, Vij — elastic constants (Ell/lg = Egl/g],, G],Q = GQ]); o1, &9 s B3 — Cartesian co-
ordinates («3 = 0 — equation of the middle surface); 2h — thickness of the plate; § — density of the
material; w, 71, ¥2 — deflection and rotation angles of the normal to the middle surface; Q;, M;; —
inner forces; g, m; — environmental stresses.

The displacements of an arbitrary point of the plate is determined by the following formulas,

U = ’Yiaz ('L G 1, 2), U3z = wW. (3)

Modified equations of the bending of the plate can be obtained from the equations (1)—(3), not
taking into account rigid rotations
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According to [7] let’s use in the expressions for Mia, Mo the function H (response on rotation)
and the small parameter [ = T)% ;
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Degenerated system of equations that corresponds to Egs. (1), (2) taking into account the rela-
tions (4) in the case [ = 0, represents the modified model of the bending of the plate. Thus the last
equation (4) can be rewritten as
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It is satisfied by the insertion of the potential of the angles of rigid rotations
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After the conversion of the relations (2), taking into account (5) and after substitution them in
the equation of the system (1), we will obtain the following system of equations,
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D, A — normalizing factors.
Normal and tangential components of displacements and forces along the smooth curve C' with

the unit normal and tangential vectors {ni(a);ns(a)}, {Ti(e); (@)}, (1 = —ng, 70 = ny) are
determined by the formulas
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In the formulation of the boundary conditions in the framework of modified equations as the
variables are the normal and tangential components of the moment, shearing force, deflection and
normal component of the angle of rotation of the normal to the middling surface.

3. PROBLEM STATEMENT

Let’s consider the problem (without initial conditions) about the vibration of rectangular plate with
massive inclusion. Exterior edge is loosely leant, the interior edge with the directing L curve (the
curve of Lapunov’s type) is rigidly clamped with the massive body. The body is under the impact of
forces and moments with the resultants P = Pysinfot, My = Migsinfpt, My = Mo sin Ogt, which
verify according to the harmonic law with the respect to the time co-ordinate with the frequency 6y,
Fig. 1.

Let’s denote as I = {(a1, a2) : 0 < a1 <11, 0 < ag <o} the rectangle with the sides I, , s,
the edge of it 01T coincide with the exterior contour of the middle surface of the plane. On 911 we
have the conditions that correspond to loosely leant edge,
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Fig. 1. The geometry of the plate and inclusion
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Formulating the boundary conditions on the inner contour of the plate we suppose that the
vibration of the body is according to the harmonic law with the frequency 0y, and also we model the
interaction of the body with the plate by the forces and moments p = po(¢) sin pt, m = mg(¢) sin byt
than are distributed along the contour L. The moments are oriented in the direction of the normal
to L. Let’s denote as 1w = wqsinbot, 1; = ipsinbpt (i = 1,2) the displacements of the point of
localization of the resultant force and the angles of rotation of the body with respect to the axes of
reduction of the resultant moments.

Thus for the deflection and normal component of the angle of rotation of the normal to the

middle surface on the boundary, taking into account -, = —% , we find the following expressions,
w(&,t) = (wo + &1h10 + E21b20) sin Oot,
(1) = —[Y10n1 () + P20n2(€)] sinbt,  when £ € L,

where {n(£),n2(€)} — unit normal to the line L vector.
The forces satisfy the equation of movement
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where m — mass of body; I;, I[» — moments of inertia of the body with respect to the axes of
reduction oo = lyg, a1 = lyg.

So for the definition of the unknown functions and parameters we have the system of equations
(6), (10) and the boundary conditions (8), (9).

4. INDIRECT METHOD OF THE BOUNDARY ELEMENTS
4.1. Generalized singular solution

Let’s consider loosely leant plate with the middle plane in the form of rectangle /7. In the square
" = {a(ay,a2) : |1 —af| <e¢, |ag—ab| <e}, II" C II, the plate is loaded by the forces which
are distributed symmetrically with respect to the axes of its symmetry (collateral to the sides).
The resultants of these forces are the normal force 77 sin 6yt and moment 77 sin €yt and they vary
according to the harmonic law with the frequency 6y. In this situation the resultant moment is
oriented in the direction of the unit vector {n}, n5}. For the modeling of this kind of impact we
use delta-like functions [8]
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9(€) (0 < ¢ < 1) — decreasing smooth function with the point of maximum ¢ = 0; g(1) = 0;

Jo 9(€)dé = 1.
The solution of the system of equations (6) that satisfy the conditions (8) we find in the form
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where
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Depicting the delta-like functions in Eq. (11) in the form
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and substituting them with Eq. (12) in Eq. (6), we obtain the system of algebraic equations with
respect to the coefficients of decisive functions. For finding the first two functions (6) we have the
following system,
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Binary series in Eq. (12) converge uniformly when ¢ # 0 and it allows us to make boundary
junction when e — 0. For instance if g(t) = 2(1 — t), then ¢(\g,€) = [sin (Aks) / (A ))]2 and as
the result of the estimation |p(Aze)| = O(1/k?), series in Eq. (12) converge uniformly.

Boundary functions in Eq. (12) when ¢ — 0 are called as the singular solution of the system (6).

4.2. Integral equations of the system

Let’s consider at first the problem of the loading of loosely leant rectangular plate by the unknown
forces and moments p(&)sinfpt, m(§)sinfpt that are distributed along the line L. Generalized
solution of the problem is represented in the form of integral compressions of these forces and
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the solution of the problem of Section 3.1. For the main decisive function we have the following
expressions,

w(a,t) = lin})/ Z Ol'i)m {wum Drem (&) p(&) + wagmm(§) Q?ﬁ:—;(i)] D (@) dI(€) sin byt
k=
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The expressions for the normal (with respect to the line C') component of the displacement and
forces we get after substituting Eq. (14) in Eq. (7).

After the substitution of Eq. (14) in Eq. (9) and making the boundary junction when a — ay,
ap € L, (in the domain T\ D in the direction of the exterior normal to L), and taking into account
Eq. (10), we get the system of three integral equations and three integral relations
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4.3. Collocation method

The approximate solution of the system of equations (15) we find by the collocation method. The
line L is approached by the broken line L*, that is formed by the rectilinear sections L", » = 1, N,
across every section the unknown densities have the constant values p({) = 77 /2l". The section L"
is defined by the length 2I", the middle point £"(&7, &5) and the guide unit vector {7], 75} =
{11(&"), 72(£")}. The limits when € — 0 of the sums of series in Eq. (15) are approximated by the
correspondent, partial sums of series when € # 0 is adequately small.

Calculating the integrals in Eq. (15) ,taking into account assumption made and minimizing the
residual of the solution in the control points a?(af;af), ¢ = 1, N, — the middle points of the
sections L7, we reduce Eq. (15) to the system of algebraic equations
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Here, such notations are made:
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Discrete analogs of the integral expressions for the deflection and normal to the curve C' com-
ponents of the angle of rotation, shearing force and moment we get from Eqgs. (14) and (7) in the
following form,

i mes.

Q'n
L )

Consequently, having found from Eq. (16) the values of the parameters T the normal components
of displacements and forces are determined by Egs. (17). The frequencies of vibration of the plate
we can find from the condition of existence of the nontrivial solution of the homogeneous system of
Eq. (16).
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5. THE NUMERICAL EXAMPLE

Let’s consider the symmetric problem (lo; = % lgs = %2) of the vibration of the rectangular

plate with circular inclusion with the radius R. The equation of the contour L has the form oy =
lo1 — Rcost, ag = lpo — Rsint, 0 < ¢t < 2. The contour is discriminated by N elements with the
length 2" = 2rR/N, with the centers in the points a"(af, oh) and guide vectors {sint", — cost"},
where af = % — Rcost", of = %’ — Rsint", t" = n(2r — 1)/N, r = 1, N. Approximate values of the
coefficients in Eq. (15) are found when K = M = 550, ¢/l = 0.004 and N = 20.

In Fig. 2 the diagrams of the characteristic frequencies of vibrations 6 = 1%6y/2hp/D of the
square plate (I3 =l = 1, v12 = v9; = 0.3) depending on the relation of the mass of the inclusion to
the mass of the plate element ™ = m/2hm R%p are given (the line 1 corresponds to the case when
E1/E2 =100, line 2 - E1/E2 = 10 and line 3 - F1/E2 =1).
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12 ~]

T » A B _ S
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s ., b [ ——
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Fig. 2. Characteristic vibrations of the plate

6. CONCLUSION

Using the delta-like function sequences make the good convergence of the method.
As we see from the diagram when the mass of the inclusion increases the frequency of the plate
decreases. The influence of the mass of the inclusion is valuable and can’t be ignored.
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