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Application of Trefftz method for temperature rise analysis
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This paper describes the application of the Trefftz method to the temperature rise in human skin exposed to
radiation from a cellular phone. A governing equation is given as the Poisson equation. An inhomogeneous
term of the equation is approximated with a polynomial function in Cartesian coordinates. The use of the
approximated term transforms the original boundary-value problem to that governed with a homogeneous
differential equation. The transformed problem can be solved by the traditional Trefftz formulation. Firstly,
the present method is applied to a simple numerical example in order to confirm the formulation. The
temperature rise in a skin exposed to radiation is considered as a second example.
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1. INTRODUCTION

There has been an increasing public concern regarding the possible health effects of human exposure
to an electromagnetic radiation. The principal biological effect of the radiation has been considered
to be dominantly thermal in nature. The hazardous electromagnetic field levels can be quantified
analyzing the thermal response of the human body exposed to the radiation |7, 20].

In this paper, we will focus on the temperature rise in human skin exposed to the radiation.
The problem to be solved is governed with the Poisson equation with adequate boundary condi-
tions. There is an inhomogeneous term in the equation and therefore, in general, it is not adequate
to use the boundary-type solution procedures such as the boundary element methods, method of
fundamental solutions and the Trefftz methods because there exist domain integrals due to the
inhomogeneous term in the integral equation. In order to transform the domain integrals due to
boundary integrals, several formulations have been presented; dual reciprocity method [18, 19],
multiple reciprocity method [16, 17], radial bases function approximation [3, 8, 11, 14, 21], poly-
nomial function approximation method [23|, boundary point interpolation method [13], method of
fundamental solution [1, 5, 12, 15| and so on.

In this paper, the Trefftz method is applied to the analysis of the temperature rise in human
skin exposed to the radiation [4, 9, 22|. The problem to be solved is governed with the Poisson
equation. An inhomogeneous term of the equation is approximated with a polynomial function in
Cartesian coordinates. The use of the approximated term transforms the boundary value problem
of Poisson equation to that of Laplace equation. The boundary value problem governed with the
Poisson equation can be solved easily according to the traditional Trefftz formulation. In the present
method, the system of equations is derived according to the collocation-type formulation. It is not
necessary to do boundary integrals as well as domain integrals and therefore, the formulation is
much simpler than the other methods.

The remaining of the paper is organized as follows. In Section 2, the formulation of the problem
to be solved is described. In Section 3, the present method is applied to some numerical examples.
Section 4 summarizes the conclusions.
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2. FORMULATION
2.1. Governing equation and boundary condition [7, 20]

For harmonically varying electromagnetic field, the temperature rise on the human skin can be
calculated from the bio-heat equation

ou
EZKV%J«‘FQem_B(u_ub) (1)
where u is the temperature of the tissue, u, is the temperature of the blood, K is the thermal
conductivity of the tissue, C' is the heat capacity of the tissue, B is the term associated with blood
flow, and Qe is the electromagnetic power deposition.

The electromagnetic power deposition Qe¢p, is given as

Qem = p- SAR (2)

where p and SAR denote the tissue density and specific absorption rate (SAR), respectively. For
harmonically varying electromagnetic field, SAR is defined as

Cp

el
SAR = 5 |E| ‘ (3)

where |E| is the peak value of electromagnetic field, and o is the conductivity of the tissue.
In addition, the boundary condition for Eq. (1) is given by

and, on the skin surface,
H - (u—uq,)=—-Kgq (6)

where H and u, are the convection coefficient and temperature of the air, respectively.
At the thermal steady state du/0t = 0 and therefore Eq. (1) is reduced to

Viu+b=0 (7)
where
b:%[p-SAR—B(u—ua)]. (8)

The boundary conditions (4)—(6) are rewritten as

ou+fBg="vy 9)

where a, # and v denote the parameters derived from the boundary conditions.

2.2. Trefftz Formulation [10]

Now, we consider the boundary value problem defined by Egs. (7) and (9). An inhomogeneous
term (8) is approximated with a polynomial function in Cartesian coordinates

b=clr. (10)
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In this study, the fifth-order polynomial is adopted for the function 7. Therefore, ¢ and r are
defined respectively as follows
: g (11)
e {C],CQ,...,CQI},
TT = {7'1,7'2,7"3, "'ar21}
=iy, F e, R LS e B e e
(12)

The use of Eq. (10) transforms the original governing equation into

Viu+cfr=0. (13)

Since the term r; is a polynomial function, the related particular solution u” can be determined
[

easily. u! satisfies the equation
V2ul +7; =0. (14)

In the Trefftz method, the homogeneous solution of the governing equation u” is approximated

with the superposition of the related T-complete function u} [6]. The unknown function u is ap-
proximated with the T-complete function u; and the particular solution u? as follows,

u=u"+cTuP = aTu* + T u?, (15)

where a denotes the unknown parameter vector for approximating the homogeneous solution. Be-
sides, u} and u? satisfy the equations

V2u} =,
V2uf+7‘i =-{].

Equation (15) satisfies Eq. (7) but does not satisfy Eq. (9). Substituting Eq. (15) into Eq. (9)
leads to residual expressions

R=ol+fq—v
= a(aTu* + cTuP) + B(aTq* + cT'qP) — v
= (ocu* + Bg*)Ta+ (auP + fgP)Tc — (16)
where
i oul
B g Sl

Satisfying the residual equations at the boundary point P,, by means of the collocation formu-
lation, we have

Ka=f - Bce. (18)

In the matrix K, the total numbers of the rows and the columns are equal to the total number
of the boundary collocation points and the T-complete functions, respectively. Therefore, we shall
take more collocation points than the T-complete functions, i.e. M > N, and Eq. (18) is solved by
using the singular value decomposition method of the LAPACK software [2].
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2.3. Determination of parameter c

The unknown parameter vector ¢ in Eq.(18) is determined by using the iterative process. Equa-
tion (10) held at the iteration steps (k) and (k4 1) are

b(k+1) - TTC(k+1)

bk = pTelR),

};

Subtracting both sides of the above equations leads to

p(k+1) _ p(k) ,,,T(c(k-l—l) 5 c(k)),

Ab =rTAc, (19)
where the superscript (k) denotes the number of iteration.

The collocation points, which are referred as “the computing point”, are placed on the boundary

and within the domain. Holding Eq. (19) on the computing points and arranging them in the matrix
form, we have

Dic=F o

where D and f denote the coefficient matrix and vector, respectively. Equation (20) is solved for
Ac with the singular value decomposition of LAPACK software [2]. The parameter ¢ is updated
with

k) = ) 4 Ac. (21)

The convergence criterion is defined as

M.
|Ab(Q;)| < ne (22)

=1

!
(st -

where M, and 7. denote the total number of the computing points and the positive constant specified
by a user, respectively. @; denotes the computing points placed on the boundary and within the
domain.

3. NUMERICAL EXAMPLES

Example 1

A first example is considered for confirming the above formulation. An inhomogeneous term b is
given as follows,

b= ‘ (23)

The object under consideration is a square region of —1 < z <1, -1 <y < 1 (Fig. 1). The
boundary condition is given as follows,

wtgs 3l {e=dh

g = 0 (y=1),
U =g (e S,
(N

Numerical results v are shown in Table 1. The theoretical solutions are obtained by Mathematica.
We notice that the numerical solutions well agree with theoretical ones.
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Fig. 1. Numerical example 1

ik 4

Table 1. Numerical results for example 1

z-coordinate | Theoretical (u) Present (u) Error (%)
=1 =l =] 0
—0.75 —1.63385 —1.63386 0.000563
-0.5 —2.16612 —2.16614 0.00089
=0.25 —2.56370 —2:56873 0.00096
0. —2.80189 —2.80193 0.00137
0.25 —2.86587 —2.86591 0.00119
0.5 —2.75167 —2.75171 0.00130
0275 —2.46638 —2.46642 0.00156
1, —2.02774 —2.02778 0.00180

Example 2

The temperature rise in a skin is considered in the second example. An inhomogeneous term is
defined as follows,

b=p-SAR — B(u — up). (24)

The object under consideration is a square region of —1 <z <1, —1 <y < 1 (Fig. 2). The phys-
ical parameters are given as follows: p = 1010 [kg/m?], K = 0.50 [W/m °C], B = 8650 [W/m? °C],
up = 37.0[°C], h = 10.5[W/m?°C], and u, = 27.0[°C].

The parameter SAR [W /kg] depends on cellular phones. We will consider four cellular phones;

Docomo (SO702i), au (Talby), Softbank (Nokia 702NK2), and Willcom (WAO07SH), which are
popular in Japan. The boundary conditions are given as

hu+ Kq = by (=1},

u =g iy =13
U 2370 rle =R
u =37,0. gpe Y

Numerical results are shown in Table 2. Distributions of the temperature rise are shown in
Figs. 3-6. The temperature rise increases according to the increase of the SAR value. They are
3G-type cellular phones, except for Willcom (WA007SH). However, from the view-point of the rise
in the human skin, we notice that Willcom (WAQ07SH) is the most gentle and that the au(Talby)
is gentler than the other 3G-type cellular phones.



50

E. Kita, Y. Hirayama

y A
u=237.0 1
hu + Kq = hua
-1 0 1
>
X
u=37.0
u=370 -1

[
110.00045

‘ J 0.00005
)

[cl
000045

[#0.0004-0.00045
[10.00035-0.0004
0.0003-0.00035
[30.00025-0.0003
[ 0.0002-0.00025
010.00015-0.0002
[10.0001-000015
[80.00005-0.0001

[10-0.00005

"~lo.ooo4
: *{0.00035

-~ Joooos

"!0.00025

1 0.0004-0.00045
[10.00035-0.0004
[ 0.0003-0.00035
0.00025-0.0003
 0.0002-0.00025
[10.00015-0.0002
[J0.0001-0.00015
[ 0.00005-0.0001
[30-0.00005

Fig. 5. au (Talby)

Fig. 2. Numerical example 2
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Fig. 4. Softbank (Nokia 702NK2)

[°cl

‘!0.000045

000002

10.000015
|
,o‘ooom

10.000005

18 0.00004-0.000045
[10.000035-0.00004
[ 0.00003-0.000035
[30.000025-0.00003
2 0.00002-0.000025
[10.000015-0.00002
[310.00001-0.000015
[ 0.000005-0.00001

[30-0.000005
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Table 2. Numerical results for example 2

Model SAR | Max. Temp. Rise [°C]
Docomo SO702i 1:35 0.000409
Nokia 702NK2 0.83 0.000251
au Talby 0.499 0.000151
Willcom WAQ07SH | 0.021 0.000006

4. CONCLUSIONS

This paper describes the application of the Trefftz method to the temperature rise analysis in human
skin exposed to radiation from a cellular phone. The governing equation is given as the Poisson
equation. An inhomogeneous term of the equation is approximated with a polynomial function in
Cartesian coordinates. The use of the approximated term transforms the original boundary-value
problem to that governed with a homogeneous differential equation. The transformed problem can
be solved by the traditional Trefftz formulation.

Firstly, the present method is applied to a boundary value problem of the Poisson equation. Nu-
merical results well agreed with theoretical solutions. So, in a second example, the method was ap-
plied to the temperature rise in human skin exposed to radiation of a cellular phone. We compare four
cellular phones; Docomo (SO702i), au (Talby), Softbank (Nokia 702NK2) and Willcom (WA007SH),
which are popular in Japan. They are 3G-type cellular phones, except for Willcom (WAO007SH).
From the view-point of the rise in the human skin, we notice that Willcom (WA007SH) is the most
gentle and that the au(Talby) is gentler than the other 3G-type cellular phones.
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