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This article presents recent developments in the field of stochastic finite element analysis of structures and
earthquake engineering aided by neural computations. The incorporation of Neural Networks (NN) in this
type of problems is crucial since it leads to substantial reduction of the excessive computational cost. In
particular, a hybrid method is presented for the simulation of homogeneous non-Gaussian stochastic fields
with prescribed target marginal distribution and spectral density function. The presented method consti-
tutes an efficient blending of the Deodatis—Micaletti method with a NN based function approximation.
Earthquake-resistant design of structures using Probabilistic Safety Analysis (PSA) is an emerging field
in structural engineering. It is investigated the efficiency of soft computing methods when incorporated
into the solution of computationally intensive earthquake engineering problems.

1. INTRODUCTION

Over the last ten years artificial intelligence techniques like Neural Networks (NN) have emerged
as a powerful tool that could be used to replace time consuming procedures in many scientific
or engineering applications. The fields where NN have been successfully applied are: (i) pattern
recognition, (ii) regression (function approximation/fitting) and (iii) optimization. In the past the
first field of application of NN was mostly used for predicting the behavior of a structural system in
the context of structural optimal design [13, 15], structural damage assessment [29], the evaluation
of buckling loads of cylindrical shells with geometrical imperfections [30] or structural reliability
analysis [7, 14, 16]. This study presents recent developments in the applications of NN in the field
of stochastic finite element analysis and probabilistic analysis of structures.

Many sources of uncertainty (material, geometry, loads, etc) are inherent in structural design.
Probabilistic analysis of structures leads to safety measures that a design engineer has to take into
account due to the aforementioned uncertainties. Probabilistic analysis problems, especially when
seismic loading is considered, are highly computationally intensive tasks since in order to obtain the
structural behaviour a large number of dynamic analyses (e.g modal response spectrum analysis, or
nonlinear time-history analysis) are required. In this work two metamodel based applications are
considered in order to reduce the aforementioned computational cost. The efficiency of a trained
NN is demonstrated, where a network is used to predict maximum interstorey drift values due to
different sets of random variables. As soon as the maximum interstorey drift is known, the limit-state
probabilities are calculated by means of Monte Carlo Simulation (MCS). In the first application the
probability of exceedance of a limit-state is obtained when the Multi-modal Response Spectrum
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analysis is adopted [26]. In the second application fragility analysis of a ten-storey moment resisting
steel frame is evaluated where limit-state fragilities are determined by means of nonlinear time-
history analysis [6].

The problem of simulating non-Gaussian stochastic processes and fields has gained considerable
interest in stochastic computational mechanics over the past years. This can be attributed to the fact
that several quantities arising in practical engineering problems (e.g. material and geometric struc-
tural properties, soil properties in geotechnical engineering applications, etc) exhibit non-Gaussian
probabilistic characteristics. Especially the simulation of highly skewed and narrow-banded fields
is well recognized nowadays as a benchmark that reveals the limitations of the existing simulation
methods [1, 4, 12].

The theory and methods of structural reliability have been developed significantly during the last
twenty years and have been documented in an increasing number of publications [24]. In this work
the probabilistic safety analysis of framed structures under seismic loading conditions is investigated
based on the methodology proposed by Fragiadakis et al. [6]. Both randomness of ground motion ex-
citation (that influence the seismic demand level) and material properties (that affect the structural
capacity) are taken into consideration. Additionally, a computationally efficient procedure, proposed
in a previous work by Lagaros et al. [11], for the simulation of homogeneous non-Gaussian stochastic
fields with prescribed target marginal distribution and spectral density function is presented. This
procedure is based on the method developed by Deodatis and Micaletti [1], which constitutes an
improved version of the algorithm proposed by Yamazaki and Shinozuka [28|. Both approaches are
related to the translation process concept [4] and are based on the spectral representation method,
in the sense that in order to produce sample functions of the underlying Gaussian field they use the
spectral representation method.

The assessment of the bearing capacity of framed structures, in terms of maximum interstorey
drift, is determined via non-linear time history analysis. Probabilistic Safety Analysis (PSA) using
the Monte-Carlo Simulation (MCS) method and non-linear time history analysis results in a highly
computationally intensive problem. In order to reduce the computational cost, NN are employed. For
the training of the NN a number of Intensity Measures (IMs) are used in order to accurately predict
the maximum interstorey drift values. The IMs adopted in the present study can be classified either
as seismic record dependent only, or as both structure and record dependent. Via the presented
PSA procedure fragility curves are obtained for different hazard levels. In addition the probability
of structure’s failure is derived as a limit-state function of seismic intensity.

2. MULTI-LAYER PERCEPTRONS

A multi-layer perceptron is a feed-forward neural network, consisting of a number of units (neurons)
linked together, training attempts to create a desired relation in an input/output set of learning
patterns. A learning algorithm tries to determine the weight parameters, in order to achieve the right
response for each input vector applied to the network. The numerical minimization algorithms used
for the training generate a sequence of weight matrices through an iterative procedure. To apply an
algorithmic operator A a starting weight matrix w(®) is needed, while the iteration formula can be
written as follows,

wtt = A(w®) = w® + Aw®. (1)

All numerical methods applied for the NN training are based on the above formula. The changing
part of the algorithm Aw(®) is further decomposed into two parts as

Aw® = g,d®) (2)

where d*) is a desired search direction of the move and a; the step size in that direction.
The training methods can be divided into two categories. Algorithms that use global knowledge
of the state of the entire network, such as the direction of the overall weight update vector, which
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are referred as global techniques. In contrast local adaptation strategies are based on weight specific
information only such as the temporal behaviour of the partial derivative of this weight. The local
approach is more closely related to the NN concept of distributed processing in which computations
can be made independent to each other. Furthermore, it appears that for many applications local
strategies achieve faster and more reliable predictions than global techniques despite the fact that
they use less information [23].

2.1. Global adaptive techniques

The algorithms most frequently used in the NN training are the steepest descent, the conjugate
gradient and the Newton’s method with the following direction vectors:

e Steepest descent method: d¥) = —VE(w®),

e Conjugate gradient method: d®) = —VE(w®) + B;_1d*~Y where §;_; is defined as
By =V Vei / VEiel: Vi1 Fletcher-Reeves,

e Newton’s method: d® = — [H(w(t))]_1 VE(w®).

The convergence properties of the optimization algorithms for differentiable functions depend on
the properties of the first and/or second derivatives of the function to be optimized. When optimiza-
tion algorithms converge slowly for NN problems, this suggests that the corresponding derivative
matrices are numerically ill-conditioned. It has been shown that these algorithms converge slowly
when rank-deficiencies appear in the Jacobian matrix of a NN, making the problem numerically
ill-conditioned [10].

2.2. Local adaptive techniques

To improve the performance of weight updating, two approaches have been proposed, namely Quick-
prop [2] and Rprop [21].

The Quickprop method

This method is based on a heuristic learning algorithm for a multi-layer perceptron, developed by
Fahlman [2], which is partially based on the Newton’s method. Quickprop is one of most frequently
used adaptive learning paradigms. The weight updates are based on estimates of the position of the
minimum for each weight, obtained by solving the following equation for the two following partial
derivatives,

86,5_1 8(-c:t‘

Ow;; g dw;j (3)
and the weight update is implemented as follows,
0,
Aw) = 55-;1?“:—6_1& Awl, (4)
dwi; | Owi; ;

The learning time can be remarkably improved compared to the global adaptive techniques.
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2.2.1. The Rprop method

Another heuristic learning algorithm with locally adaptive learning rates based on an adaptive
version of the Manhattan learning rule and developed by Riedmiller and Braun [21] is the Resilient
backpropagation algorithm abbreviated as Rprop. The weight updates can be written as

0€,
sl = (22) 5>
J J a'wi]‘ (
where
: bk s T OEFEBE A
mm(a-nz(j ),nmax), if ow; : dw;, >0,
ey : (t-1) W PEMLGER 6
nz] max(b 2 T]U ,nmin)v if (911)1] x 8'(1)1] 2 0’ ( )
77,(;'_ 1) : otherwise,

where a = 1.2, b = 0.5, Nmax = 50 and Nmin = 0.1 [22]. The learning rates are bounded by upper and
lower limits in order to avoid oscillations and arithmetic underflow. It is interesting to note that, in
contrast to other algorithms, Rprop employs information about the sign and not the magnitude of
the gradient components.

3. THEORETICAL BACKGROUND FOR NON-(GAUSSIAN FIELDS

The methods developed in the literature for the simulation of non-Gaussian stochastic fields can
be grouped into two main categories. The methods which belong to the first category, seek to
produce sample functions matching the prescribed power spectral density function and lower-order
statistics (mean, variance, skewness and kurtosis) of a target stochastic field [5]. However, sample
functions having only the prescribed lower moments are not sufficient for the successful solution
of problems where the accurate characterization of the tails of the distributions is of importance
(e.g. soil liquefaction [19]). This is due to the potential non-uniqueness of the marginal probability
distribution of realizations of a non-Gaussian field that is defined only by its lower-order moments.
The methods belonging to the second category are more challenging in the sense that they seek to
generate sample functions compatible to complete probabilistic information, namely the marginal
probability distribution and the spectral density function of the stochastic field [1, 4, 18, 28].

In this work a computationally efficient soft computing hybrid methodology is presented, for the
simulation of homogeneous non-Gaussian stochastic fields with prescribed target marginal distribu-
tion and spectral density function [11]. The present methodology retains the accuracy characteristics
of the method proposed in [1] while drastically reduces the computational effort of the simulation
by reliably predicting the unknown underlying Gaussian spectrum.

Since all the joint multi-dimensional density functions are needed to fully characterize a non-
Gaussian stochastic field, much of the existing research has focused on a more realistic way of
defining a non-Gaussian sample function as a simple transformation of some underlying Gaussian
field with known second-order statistics. If g(x) is a homogeneous zero-mean Gaussian field with
unit variance and power Spectral Density Function (SDF) Sg4(x) (or equivalently autocorrelation
function Rg4(§)), a homogeneous non-Gaussian stochastic field f(z) with power spectrum S}}(K))
can be defined as

flz)=F" &[g(z)] (7)

where @ is the standard Gaussian cumulative distribution function and F is the non-Gaussian
marginal cumulative distribution function of f(z). The transform F~!.® is a memory-less translation
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since the value of f(x) at an arbitrary point = depends only on the value of g(z) at the same point
and the resulting non-Gaussian field is called a translation field [3, 4]. It is worth noting that Eq. (7)
is a Gaussian to non-Gaussian mapping and that f(z) has also zero-mean and unit variance.

The main difficulty when dealing with translation fields is that, although the mapped sample
functions of Eq. (7) will have the prescribed target marginal probability distribution F', their SDF
will not be identical to S’}}(n) due to the non-linearity of the mapping. Another important issue
pointed out by Grigoriu [4] is that the choice of the marginal distribution of f(z) imposes constrains
to its correlation structure reflected by the relationship

Ry(¢) / / “H@(91)) F'[3(92)] - dlg1, 923 Rgg(€)] dgrdga (8)

where g1 = g(), g2 = g(z + €) and ¢[g1, g2; Rgg(&)] denotes the joint density of {g1, g2}

Strictly speaking, if the target F' and R?f (€) are proven to be incompatible from Eq. (8), there is
no translation field with the prescribed characteristics. The relationship between the two autocor-
relation functions (or equivalently between the two power spectra) can have a closed form only in
few cases (e.g. lognormal and cubic fields) [4]. The problem of incompatibility becomes even greater
for highly skewed narrow-banded stochastic fields as it is explained in [1]. In this case, one has
to resort to translation fields that match the target marginal distribution and SDF approximately.
The particular approximation mainly depends on the nature of the problem considered. An accurate
recreation of the tails of the probability density function (PDF) may be critical in fatigue analysis or
in soil liquefaction problems whereas capturing a narrow-banded SDF may be crucial in the analysis
of a lightly damped system [12, 19].

4. SIMULATION ALGORITHMS

The two aforementioned problems arising in the context of translation fields have been studied in
the last decade by several researchers [1, 4, 12]. The solutions proposed by Yamazaki-Shinozuka [28]
and Deodatis-Micaletti [1] are briefly discussed in the following lines together with the respective
algorithms.

4.1. Yamazaki—Shinozuka (Y-S) algorithm

In order to address the problem of spectral distortion caused by the nonlinear transformation of
Eq. (7), Yamazaki and Shinozuka proposed an iterative procedure involving the repeated updating
of the SDF of the underlying Gaussian stochastic field g(z). This updating process is defined in
such a way that when the final realization of g(z) is generated according to the updated Sg¢(x) and
then mapped to f(z) via Eq. (7), the resulting non-Gaussian sample function will have both the
prescribed marginal probability distribution and SDF. The formula used to update Syq(%) is the
following,

: S(j)(li)
S50 = 28 2L s ©)

where j is an iteration index. The rationale existing behind the choice of this expression is that the
rate of change at each wave number, which is represented by the ratio Sgg,)( )/ S ( ), is expected to
approach a constant value after a small number of iterations. The issue of posmble incompatibility
between the target F' and R (&) (or ST 1(k)) has not been addressed and the two quantities are
arbitrarily defined in the algorithm.
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The Y-S algorithm can be summarized as follows:

e Generation of a Gaussian sample function using the spectral representation method,

N-1
x) =2 Z \/ Sgg(kin) Ak cos(kn + ¢p) (10)
n=0

(for the first iteration, the relationship Sgq(k) = S']Tf(r-:,) is used).

Calculation of the corresponding non-Gaussian sample function using Eq. (7).

Estimation of the SDF of the non-Gaussian sample function via spatial averaging,

2

ff(m /f z) exp(—ikz)dz| . (11)

Convergence checking: Sj(cjf) (k) - S}} (k). If not, updating of Syq(k) is performed via Eq. (9).

This algorithm provides fairly good results for slightly non-Gaussian fields with broad-banded
SDFs. For the case of highly skewed and/or narrow-banded fields, several issues arise regarding the
Gaussianity and homogeneity of the Gaussian sample functions produced by Eq. (10). These issues
are discussed in the following section.

4.2. Deodatis—Micaletti (D-M) algorithm

Deodatis and Micaletti [1] pointed out that the previous algorithm presents some limitations espe-
cially with regard to the simulation of highly skewed non-Gaussian stochastic fields. These limita-
tions are due to the specific form of the updating formula of Eq. (9). The major problem is that
after the first iteration the underlying Gaussian field is no more Gaussian and homogeneous. This

departure from Gaussianity and homogeneity can be briefly explained as follows: Since Sg({]+l)(l<,) is

related with S}Jf) (k) and since S}Jf) (k) depends on the random phase angles ¢, due to Eq. (11), the
terms in series of Eq. (10) are not independent. The central limit theorem clearly states that the
terms in the summation have to be independent in order for g(z) to be asymptotically Gaussian as
N — oco. The authors observed that, for highly skewed marginal probability distributions, the cor-
relations between the terms of Eq. (10) can become strong leading to a substantially non-Gaussian
and non-homogeneous underlying field (although the deviation from homogeneity was found to be
much smaller than the deviation from Gaussianity). As a result of these deviations, the generated
non-Gaussian sample functions will not have the prescribed marginal PDF.

Having in mind the aforementioned observations, Deodatis and Micaletti proposed an algorithm
having the same structure as the previous one but with the following improvements:

e The updating scheme has been slightly modified in order to achieve more rapid convergence,

. ST) |
SGm) = || 5P(x). (12)
St (k)

From extensive experimentation, the authors concluded that a value of a equal to 0.3 gives the
better results in terms of convergence.
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e In order to overcome the problems resulting from the specific form of the updating scheme,
Eq. (7) has been extended to an empirical non-Gaussian to non-Gaussian mapping quantifying
at every iteration the deviation from Gaussianity of the underlying “Gaussian” field

flz) = F~' - F*[g(z)] (13)
where F'* is the empirical marginal probability distribution of g(z) updated in each step.

e The issue of possible incompatibility between the target F' and Ri’;f(f) has been addressed by
using a “spectral preconditioning” step based on Eq. (8) and leading in some cases to slight
modifications of the spectral content of the prescribed SDF. The resulting modified spectrum is
used for starting the procedure.

e The sample functions produced by Eq. (10) are frequency shifted i.e. the values of the SDF at
wave numbers £, = nAk + Ax/2 are employed instead of the values at k, = nAk [31]. This
modification is introduced only for simulation purposes in order to circumvent some convergence
issues arising around k = 0.

The D-M algorithm provides sample functions that match the prescribed characteristics with
remarkable accuracy even in the case of non-Gaussian fields with large skewness and narrow-banded
spectra. However, the use of the updating formula of Eq. (12) in conjunction with the iterative
calculation of the empirical distribution of the underlying “Gaussian” field significantly burdens the
computational cost of the algorithm.

5. FRAGILITY ANALYSIS USING MONTE CARLO SIMULATION

Extreme earthquake events may produce extensive damage to structural systems despite their low
probabilities of occurrence. It is therefore essential to establish a reliable procedure for assessing
the seismic risk of real-world structural systems. Probabilistic safety analysis provides a rational
framework for taking into account the various sources of uncertainty that may influence structural
performance under seismic loading conditions. The core of PSA is seismic fragility analysis, which
provides a measure of the safety margin of a structural system for different limit-states.

The theory and the methods of structural reliability have been developed significantly during
the last twenty years and are documented in a large number of publications [24]. In this work the
probabilistic safety analysis of framed structures under seismic loading conditions is investigated.
Randomness of ground motion excitation (that influences seismic demand) and of material prop-
erties (that affect structural capacity) are taken into consideration using Monte Carlo Simulation.
The capacity assessment of steel frames is determined using nonlinear time-history analysis. The
probabilistic safety analysis using Monte-Carlo Simulation and nonlinear time history analysis re-
sults in a computationally intensive problem. In order to reduce the excessive computational cost,
techniques based on NN are implemented. For the training of the NN a number of IMs are derived
from each earthquake record, for the prediction of the level of damage, which is measured by means
of maximum interstorey drift values Oy -

The seismic fragility of a structure Fg(z) is defined as its limit-state probability, conditioned
on a specific peak ground acceleration, spectral velocity, or other control variable that is consistent
with the specification of seismic hazard

Fr(z) = P[LS;/PGA = 1] (14)

where LS; represents the corresponding i-th limit-state and the peak ground PGA is the control
variable. If the annual probabilities of exceedance P[PGA = z] of specific levels of earthquake motion
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are known, then the mean annual frequency of exceedance of the i-th limit-state is calculated as
follows,

As; = Y Fr(z) P[PGA=g]. (15)

Equation (15) can be used for taking decisions about, for example, the adequacy of a design or the
need to retrofit a structure. In the present study the aim is to evaluate the fragility Fr(z). Once
the fragility is calculated the extension to Eq. (15) is straightforward.

Often Fr(z) is modelled with a lognormal probability distribution, which leads to an analytic
calculation. In the present study Monte Carlo Simulation (MCS) with improved Latin Hypercube
Sampling (iLHS) for the reduction of the sampling size, is adopted for the numerical calculation of
Fg(z). Numerical calculation of Eq. (14) provides a more reliable estimate of the limit-state proba-
bility, since it is not necessary to assume that seismic data follow a lognormal distribution. However,
in order to calculate the limit-state probability, a large number of nonlinear dynamic analyses are
required for each hazard level, especially when the evaluation of extremely small probabilities is
needed.

The methodology requires that MCS has to be performed at each hazard level. Earthquake
records are selected randomly and scaled to a common intensity level that corresponds to the hazard
level examined. Scaling is performed using the first mode spectral acceleration of the 5% damped
spectrum (Sa(7T1,5%)). Therefore, all records are scaled in order to represent the same ground
motion intensity in terms of Sa(T7,5%). Earthquake loading is considered as two separate sources
of uncertainty, ground motion intensity and the details of ground motion. The first uncertainty refers
to the general severity of shaking at a site, which may be measured in terms of any IM such as
PGA, Sa(Ty,5%), Arias intensity, etc. The second source refers to the fact that, although different
acceleration time histories can have their amplitudes scaled to a common intensity, there is still
uncertainty in the performance, since IMs are imperfect indicators of the structural response. The
first source is considered by scaling all records to the same intensity level at each limit-state. The
second source is treated by selecting natural records as random variables from a relatively large suite
of scenario based records. The concept of considering separately seismic intensity and the details
of ground is the backbone of the Incremental Dynamic Analysis (IDA) method [27], while Porter
et al. [20] have also introduced intensity and different records as two separate uncertain parameters
in order to evaluate the sensitivity of structural response to different uncertainties.

The random parameters considered in this study are the material properties and more specifically
the modulus of elasticity F and the yield stress fy, as well as and the details of ground motion where
a suite of scenario based earthquake records is used. The material properties are assumed to follow
the normal distribution while the uniform distribution is assumed for the records in order to select
them randomly from a relatively large bin of natural records. The first two variables are sampled
by means of the iLHS technique in order to increase the efficiency of the sampling process.

In reliability analysis the MCS method is often employed when the analytical solution is not
attainable and the failure domain can not be expressed or approximated by an analytical form.
This is mainly the case in problems of complex nature with a large number of basic variables
where all other reliability analysis methods are not applicable. Expressing the limit-state function

as G(x) < 0, where x = (21, z2, ..., zp)T is the vector of the random variables, the probability
of exceedance can be obtained as
Py / Fikyas (16)
G(z)>0

where f,(x) denotes the joint probability of failure for all random variables. Since MCS is based on
the theory of large numbers (No ) an unbiased estimator of the probability of failure is given by

Noo
1
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where I(x;) is a Boolean vector indicating failure and non-failure simulations. In order to estimate
Prs an adequate number of Ny, independent random samples is produced using a specific prob-
ability density function for the vector x. The value of the failure function is computed for each
random sample z; and the Monte Carlo estimation of Ppg is given in terms of the sample mean by

Prg = (18)

Nsim
where Ny is the number of failure simulations, where the maximum interstorey drift value exceeds
a threshold drift for the limit-state examined. In order to calculate Eq. (18) Ny, nonlinear time
history analyses have to be performed at each hazard level. Clearly the computational cost of per-
forming so many nonlinear dynamic analyses, even when an efficient sampling reduction technique
(such as iLHS) is used, is prohibitive. In order to reduce the computational cost, properly trained
NN are implemented.

As already mentioned back-propagation NN are used in order to reduce the number or earthquake
simulations required for the calculation of the probability of Eq. (18). The principal advantage of
a properly trained NN is that it requires a trivial computational effort to produce an acceptable
approximate solution. Such approximations appear to be valuable in situations where actual re-
sponse computations are CPU intensive and quick estimations are required. Neural networks have
been applied in the past by Papadrakakis et al. [16] in order to calculate the probability of failure
for steel moment frames using inelastic static analysis. In recent studies NN have been adopted
for the reliability analysis of structures by Nie and Ellingwood [14] and Hurtado [8]. However, in
the present study the NN are implemented in order to predict the maximum seismic response with
natural earthquake records replacing the time consuming nonlinear time history analysis. The NN
are trained in order to predict the maximum interstorey drift 6.« for different earthquake records
which are identified by NN using a set of IMs.

The term Intensity Measure is used to denote a number of common ground motion parameters
which represent the amplitude, the frequency content, the duration or any other ground motion
parameter. A number of different IMs has been presented in the literature [9], while various at-
tempts to relate an IM with a damage measure such as maximum interstorey drift values have been
made [25]. The IMs adopted can be classified as record dependent only or as both structure and
record dependent. The complete list of the IMs used in this study is given in Table 1.

It can be seen that the IMs selected, vary from widely used ground motion parameters such as
peak ground acceleration (PGA) to more sophisticated measures such as SaC. The definitions and

Table 1. Intensity measures

No Intensity Measure

1 PGA (g)
2 PGV (m)
3 PGD (m)
4 V/A (sec)
5 Arias intensity (m/sec)
6 Significant duration (5 to 95 % of Arias) (sec)
7 RMS acceleration (g)
8 Characteristic Intensity
9 CAV

10 Spectral Intensity

11 Total Duration (sec)

12 SA(TY) (g)

13 SV(Ty) (cm)

14 8aC,.c=2 (g)

15 8aC, c=3.(g)
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further discussion on the first thirteen measures of Table 1 is given by Kramer [9]. The last two IMs
refer to a measure that can be defined as

SaC = Sa(T) 4 /% ; (19)

The parameter ¢ takes the value 2 and 3 for the 14th and the 15th parameter of Table 1, respec-
tively. These IMs were introduced in order to assist the NN to capture the effects of inelasticity by
considering the elastic spectrum at an “effective” period longer than 77 , thus reflecting the reduction
in stiffness.

For each hazard level separate training of the NN is performed by means of the above IMs.
The training process is based on the fact that the trained NN will assign small weights to the IMs
which have poor correlation with the damage measure selected. Instead of using the whole set it
was examined the suitability of using only some of the IMs of Table 1. The parametric study was
performed for various intensity levels since the performance of an IM depends also on the level of
nonlinearity that the structure has undergone. The ten combinations of IMs, shown in Table 2, were
compared.

Table 2. Intensity measures combinations

IM combinations
1

1,2

1,2.3

1.2.3.b

1,2:3.5.9
1,2,3,5,9,10
1,2,3,5,9,10,12
1,2,3,5,9,10,12,14
1,2,3,5,9,10,12,14,15
ALL

“-DomEHU QW g

Table 3. Prediction errors for the maximum interstorey drift @max

IM Combination
A B C D E F G H I ALL
PGA = 0.05g
MAX 49.7 39.6 19.6 32.6 159 148 49 270 236 9.0
MIN 44,.-02., 09, -03 .03 0610 .18 _ 0.6-. 0.3
AVERAGE 262 110 78 76 66 63 29 85 79 44
PGA = 0.27g
MAX 32.6:.28.2. 21.4;. 26.6.: 46.7:::23.6: .595. .24:5 . 35.9::..9.6
MIN 09 0.1 1.8 %2018 woidadsh 3008 - - 07 - .03 .15
AVERAGE 16.9 157 111 133 134 93 50 103 99 5.0
PGA = 0.56g
MAX 62.0 67.2 28.8 422 354 280 33.2 293 164 9.2
MIN 67 32 02 06 03::::02-0%4 13 22 08
AVERAGE.: :22.8 ..26:8::10.7." 13.1{-18,2::5d4:31 4411 - 105 .. 7.5, 48
PGA = 0.90g
MAX 72.1 45.2 51.0 233 13.3 169 12.0 8.7 125 9.2
MIN 3.0 6.1 14 05 1.2 09 05 06 02 09
AVERAGE 359 198 184 68 49 87 38 39 44 338
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The performance of each combination is shown in Table 3. The efficiency of the NN is evaluated for
the ten-storey steel moment resisting frame described in one of the next sections. For this parametric
study the material random variables were considered with their mean values. From Table 3 it is
clear that the use of record dependent only measures, such as PGA, lead to increased error values,
while more refined measures help to reduce the error considerably. The use of the complete set of
IMs in Table 1 is preferred since it performed equally well for all four hazard levels examined in the

parametric study that follows.

6. APPLICATION OF THE HYBRID METHOD FOR SIMULATING NON-GAUSSIAN FIELDS

The aim of this part of the study is to present a soft computing hybrid methodology for simulat-
ing in a computationally efficient way homogeneous non-Gaussian stochastic fields with prescribed
target marginal distribution and spectral density function. The soft computing hybrid method con-
stitutes an efficient blending of the D-M method with a NN based function approximation. This
approach takes advantage of the improvements introduced by Deodatis and Micaletti in [1], while by
approximating the unknown Gaussian spectrum with a NN prediction reduces drastically the com-
putational effort of the simulation. This is of paramount importance in the framework of a stochastic
structural analysis performed with the Monte Carlo simulation method where, in every simulation,
a new non-Gaussian sample function has to be created. The main idea of the presented method
is to replace the updating scheme of the Gaussian spectrum of Eq. (12) (source of all important
difficulties described in previous sections) by a regression model. Specifically, a Gaussian spectrum
is being built using a NN based regression model H. This model has to lead, through Egs. (10),
(11), (13) to a non-Gaussian spectrum consistent to the target spectrum.

It must be noted that, in the hybrid methodology, NN are not implemented according to the
classical three-phase procedure: training, testing and prediction phases. The present NN implemen-
tation has two distinctive features compared to the conventional one. The first feature is that only
the training phase is employed with the training set consisting of one training pair. The input vector
corresponds to N wave number values x while the target vector corresponds to the N values of the
target non-Gaussian spectrum. N is the number of points in the discretization of the wave number
domain or equivalently the number of terms in the series of cosines formula of Eq. (10). The second
feature is that the output and target vectors are different. The output vector corresponds to the
unknown Gaussian spectrum while the target vector to the known non-Gaussian spectrum.

The term hybrid stems from the combination of NN with the transformation procedure of
Egs. (10), (11), (13). The training procedure of the hybrid algorithm changes the parameters of
the NN (weights) until the prediction of the Gaussian spectrum becomes the “correct” one. In each
training step, using Egs. (10), (11), (13), a non-Gaussian spectrum is produced that matches the
target one under the convergence criterion

1 2
= 52 Sys(k) = Sfr(ks)] " )
J=l

A schematic representation of the hybrid method is given in Fig. 1.

In this way, the unwanted correlations arising between the terms of the spectral representation
series become negligible and thus, the use of translation fields is possible. However, the authors pre-
ferred to utilize the extended empirical non-Gaussian to non-Gaussian mapping of Eq. (13) for two
main reasons: The first one is related to the inherent limitations associated with the translation field
concept, namely the possible incompatibility between the marginal distribution and the correlation
structure of a translation field. Since experimental data can lead to a theoretically incompatible pair
of F and RT ({) it is obvious that an algorithm covering a wider range of non-Gaussian fields is
preferable. The second reason is connected to the asymptotical Gaussian nature of sample functions
produced by the spectral representation method. As the central limit theorem states, an infinite
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Fig. 1. A schematic representation of the hybrid method

number of terms is required in spectral representation series in order for the generated sample func-
tions to be Gaussian. Since in practical applications a finite number of terms are used, the sample
functions are approximately Gaussian and Eq. (10) is always approximate. As a result of the selected
mapping (see Eq. (13)), the presented methodology does not require a “spectral preconditioning”
step, the relative importance of which, has already been recognized by Deodatis and Micaletti.

At this point, it is worth noting that, especially in the case of highly skewed non-Gaussian
fields, omission of the “spectral preconditioning” step leads to a less stable convergence in the D-M
method, often requiring a reseeding with another Gaussian sample function to proceed. This means
that the overall iterative procedure may be repeated a number of times before reaching convergence.
When dealing with stochastic fields with distributions close to the Gaussian, the problem is not so
important in contrast to the highly skewed cases, which can require a large number of repeated
cycles. The necessity of reseeding in these cases can be explained by the fact that, after a reasonable
number of iterations, the updating scheme of Eq. (12) does not lead to any further improvement
in Syy(k) and the D-M algorithm continues without converging. The presented methodology, based
on the robust updating of the Gaussian spectrum using NN, does not require a reseeding and
thus leads to a drastic reduction in the total number of iterations, which over-counterbalance the
additional computational cost of the calculation of the empirical marginal probability distribution
of g(z) in every iteration.

Furthermore, it has to be pointed out that the presented method takes advantage of the frequency
shifting theorem, which further enhances its convergence behavior. In the numerical example pre-
sented below, it will be shown that the new approach permits a perfect matching of both target
PDF and SDF of highly skewed non-Gaussian fields in a minimum number of iterations, a fact that
is very important for the stochastic analysis of real world structures where a large number of sample
functions is often needed.

In order to demonstrate the capabilities of the new methodology, a characteristic example is pre-
sented involving a highly skewed lognormally distributed field. The stochastic field is homogeneous
and has zero mean and unit standard deviation. The correlation structure of the field is described
by the following SDF,

ST, (k) = 3021;3,@2 exp[-blxll, KER, (21)
where o is the standard deviation of the stochastic field and b denotes a parameter that influences the
shape of the spectrum and hence the scale of correlation. It is reminded that, as b increases the SDF
becomes more narrow-banded i.e. it has substantial values only in a restricted range of wave numbers.
In this example, the values of o = 1 and b = 5 are selected, leading to a moderately narrow target
power spectrum. Finally, the stochastic field has the following characteristics: lognormal marginal
probability distribution function defined in the region [—1.3,10.0], skewness coefficient = 2.763 and
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Fig. 2. Sample function generated using (a) Deodatis-Micaletti algorithm, (b) The EHM methodology

Table 4. Computational performance of D-M and EHM methodology

Method Iterations Time (sec)
Deodatis—Micaletti 29279 146
EHM-SD 82 2.0
EHM-CG (Fletcher—Reeves) 25 0.6
EHM-Quickprop 45 1:2
EHM-Rprop 32 0.8

kurtosis coefficient = 19.085. The stochastic field can be characterized as highly skewed since its
skewness coefficient is very far from zero.

Sample functions of this numerical test are generated using the D-M and the new methodology
(EHM). The FFT version of series of Eq. (10) is used for the generation of the underlying Gaussian
field with N = 128, M = 1024 and upper cut-off wave number &, = 6.28 rad/m. A sample function
of this numerical test produced by the D-M method is plotted in Fig. 2a while a sample function
resulting from the methodology of Lagaros et al. [11] is depicted in Fig. 2b. The two sample functions
have their values lying within the following ranges:

e Deodatis—Micaletti (Fig. 2a): [—1.23,7.87],
e EHM methodology (Fig. 2b): [—1.25, 8.89)].

These ranges are confirmed by the marginal PDF plots presented below (f-axis). In order to achieve
convergence, the D-M algorithm requires a very large total number of iterations while the method of
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Table 5. Statistical comparison of D-M and EHM methodology

Run Deodatis—Micaletti EHM-Rprop
1 29279 32
2 46843 38
3 4414 28
4 24335 29
5 5935 31
6 94494 35
7 53 295 33
8 10628 29
9 61618 28
10 51582 29
Mean Value 38242 31.2
St. Dev. 28 701 3.5
Max 94494 38.0
Min 4414 28.0
(a)
0.8
0.6 - e Target PDF
s Sample PDF
g 0.4 -
oo
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Fig. 3. (a) Marginal PDF of sample function shown in Figure 2a versus target lognormal PDF, (b)
Marginal PDF of sample function shown in Figure 2b versus target lognormal PDF
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Lagaros et al. [11] converges in less than 40 iterations. The total computing time of both approaches
is given in Table 4. As expected, the time required by the new approach is drastically reduced (about
two orders of magnitude less than the time required by the D-M algorithm). The dependence of the
two algorithms on the random seed is examined in Table 5 where ten different values of seed are
used for starting the procedures.

The marginal PDFs of the two non-Gaussian sample functions are now depicted in Fig. 3. It can
be seen that the two approaches provide a very good matching of the target PDF. The SDFs of
the two non-Gaussian sample functions are plotted in Fig. 4 along with the corresponding target
SDF. The D-M method leads to a good prediction of the target spectrum. For the case of the soft
computing based method the Rprop training leads to a perfect matching of the target SDF.

7. APPLICATION OF NN-BASED SEISMIC FRAGILITY ANALYSIS

A suite of 95 scenario-based natural records were used in this study. In order to obtain the fragility
curves, sixteen hazard levels expressed in PGA terms ranging from 0.05g to 1.25g were used. For
each hazard level, risk assessment is performed and five limit-state fragilities are calculated. Each
limit-state is defined by means of a corresponding maximum interstorey drift fyax value. In the
present study the five limit-states considered range from serviceability, to life safety and finally to
the onset of collapse. The corresponding @max threshold values range from 0.2 to 6 percent.

The test example considered to demonstrate the efficiency of the procedure is the five-bay, ten-
storey moment resisting plane frame of Fig. 5. The mean values of the modulus of elasticity is equal
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Fig. 5. Ten-storey steel moment frame

to 210 GPa and the yield stress is f, = 235MPa. The coefficients of variation for E and f, are
considered as 5% and 10%, respectively. The constitutive law is bilinear with a strain hardening ratio
of 0.01, while the frame is assumed to have rigid connections and fixed supports. The permanent load
is equal to 5kN/m? and the live load is taken as @ = 2kN/m?. The gravity loads are contributed
from an effective area of 5m. All analyses were performed using a force-based fiber beam-column
element [17] that allows the use of a single element per member, while the same material properties
are used for all the members of the frame.

For training the NN both training and testing sets have to be selected for each hazard level. The
selection of the sets is based on the requirement that the full range of possible results has to be taken
into account in the training step. Therefore, training/testing triads of the material properties and
the records are randomly generated using the Latin Hypercube sampling. In the case of earthquake
records the selection has to take into account that the scaling factor should be between 0.2 and 5.
This restriction is applied because large scaling factors are likely to produce unrealistic earthquake
ground motions. Furthermore, the records selected for generating the training set have to cover
the whole range of structural damage for the hazard level in consideration. Thus, nonlinear time
history analyses were performed, for mean E and f, values, where the 0., values of each record
that satisfy the previous requirement were determined for each hazard level. In total 30 records are
selected for generating the training set of each hazard level taking into account that the selection
has to cover the whole range of 0.« values. Therefore, training sets with 90 triads of E, f, and
record number, all sampled as discussed above, are generated. Finally, a testing sample of 10 triads
is also selected in a similar way in order to test the performance of the NN.

The fragility curves obtained for the five limit-states considered are shown in Fig. 6. Figure 7
shows the number of MCS simulations required for the fragility curve of the Near Collapse limit-
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state (Omax > 6.0%). It can be seen that depending on the calculated probability of exceedance the
number of simulations required for a single point of the fragility curve, ranges from 50 to 1000. The
validity of the prediction obtained with the NN is shown in Fig. 8. The maximum interstorey drift
values predicted for the 10 components of the testing set compared to the values obtained with
nonlinear time-history analysis are shown in Fig. 8 for four hazard levels.

8. METAMODEL ASSISTED METHODOLOGY FOR VALIDATING THE EC8 APPROACH

Extreme earthquake events may produce extensive damage to structural systems. It is therefore
essential to establish a reliable procedure for assessing the seismic risk of real-world structural
systems. The reliability of a steel frame designed to EC8 using the modal response analysis as
suggested by Eurocode 8 is performed based on the work of Tsompanakis et al. [26]. The probability
that the life-safety is exceeded is determined, since this is the limit-state that usually controls the
design process.

8.1. Structural design under seismic loading based on EC8

The equations of equilibrium for a linearly elastic system in motion can be written in the usual form

Mii(t) + Cu(t) + Ku(t) = R(t) (22)
where M, C, and K are the mass, damping and stiffness matrices; R(t) is the external load vec-
tor, while u(t), a(t) and (t) are the displacement, velocity, and acceleration vectors of the finite
element assemblage, respectively. The Multi-modal Response Spectrum (MmRS) method is a sim-
plified method for the assessment of seismic demand based on the mode superposition approach.
Equation (22) is modified according to the modal superposition approach to a system using the
following transformation,

M.¥i(t) + Ciyi(t) + Kiyi(t) = Ri(t) (23)
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where
M, =&'M®;,, C;=&IC®, K, =&'K® and R,=&'R (24)

are the generalized values of the corresponding matrices and the loading vector, while ®; is the i-th
eigenmode shape matrix. According to the modal superposition approach the system of N differential
equations, which are coupled with the off-diagonal terms in the mass, damping and stiffness matrices,
is transformed to a set of N independent normal-coordinate equations. The dynamic response can
therefore be obtained by solving separately for the response of each normal (modal) coordinate and
by superposing the response in the original coordinates.

In the MmRS analysis a number of different formulas have been proposed to obtain reasonable
estimates of the maximum response based on the spectral values. The simplest and most popular
formula for combining the modal responses is the Square Root of Sum of Squares (SRSS). Thus the
maximum total displacement is approximated by

1

N 2
2
Umax = < E Ui max ) Uj,max = P, Yi,max » (25)
i=31

where %; max corresponds to the maximum displacement vector corresponding to the i-th eigenmode.

8.2. Metamodel assisted methodology

In the present implementation the main objective is to investigate the ability of the NN to predict
the structural performance in terms of maximum interstorey drift. The selection of appropriate I/O
training data is an important part of the NN training process. Although the number of training
patterns may not be the only concern, the distribution of samples is of greater importance. In the
present study the sample space for each random variable is divided into equally spaced distances in
order to select suitable training pairs. Having chosen the NN architecture and tested the performance
of the trained network, predictions of the probability of exceedance of the design limit-state can
be made quickly. The results are then processed by means of MCS to calculate the probability of
exceedance Pexceed Of the design limit-state using Eq. (18).

The modulus of elasticity, the dimensions b and h of the I-shape cross-section and the seis-
mic loading have been considered as random variables. Three alternative test cases are considered
depending on the random variables considered: (a) the modulus of elasticity and the earthquake
loading are considered to be random variables, (b) the dimensions b and h of the I-shape cross
section and earthquake loading are taken as random variables and (c) all three groups of random
variables are considered together. For the implementation of the NN-based metamodel in all three
test cases a two level approximation is employed using two different NN. The first NN predicts the
eigenperiod values of the significant modes. The inputs of the NN are the random variables while
the outputs are the eigenperiod values. The second NN is used to predict the maximum interstorey
drift, which is used to determine whether a limit-state has been violated. Therefore, the spectral
acceleration values of both X and Y directions are the input values of the NN while the maximum
interstorey drift is the output. The input and output variables for the two levels of approximation
are shown in Table 6.

Table 6. Input and output variables for the two levels of approximation

Test case | 1st level of approximation (NN1) 1st level of approximation (NN2)
Inputs Outputs Inputs Outputs
T.,i=1,...,8 | Raz(T3), Ray(T3), i =1,...,8 | Max drift Opmax
=l o0 b Tt =1 Bl BitalTo)o RaglTi) s dim v 8 o] Mot dnift Oieas
by hi,i=1,...,5 | Ti,i=1,...,8 | Ras(Ti), Ray(Ti), i =1,...,8 | Max drift Oy

A~ N~
e e -
N Nl S
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8.3. Seismic probabilistic analysis

The six storey space frame, shown in Fig. 9, has been considered to assess the proposed metamodel-
assisted structural probabilistic analysis methodology. The space frame consists of 63 members
that are divided into five groups having the following cross sections: (1) IPB 650, (2) IPB 650,
(3) IPE 450, (4) IPE 400 and (5) IPB 450. The structure is loaded with a permanent action of
G = 3kN/m? and a live load of @ = 5kN/m?. In order to take into account that structures may
deform inelastically under earthquake loading, the seismic actions are reduced using a behavior
factor ¢ = 4.0 (Eurocode 8, 1994).

The most common way of defining the seismic loading is by means of a regional design code
response spectrum. However if higher precision is required the use of spectra derived from natural
earthquake records is more appropriate. Therefore, a set of nineteen natural accelerograms, shown
in Table 7, is used. The records are scaled, to the same peak ground acceleration of 0.32¢g in order
to ensure compatibility. Two are from the 1992 Cape Mendocino earthquake, two are from the 1978
Tabas, Iran earthquake and fifteen are from the 1999 Chi-chi, Taiwan earthquake. The response
spectra for each scaled record, in X and Y directions, are shown in Figs. 10 and 11, respectively.
In Table 8 the probability density functions, mean values and standard deviations for all random
variables are listed.

Each record corresponds to different earthquake magnitudes and soil properties corresponding
to different earthquake events. The chosen set is kept in rational size in order to achieve increased
efficiency of NN with minimum data and covers, as much as possible, a wide range of excita-
tions in order to provide NN with more “widespread” information as it is well known that NN
cannot extrapolate efficiently any given information. Of course, as in any kind of NN applica-
tion, the selection of approximation data, i.e. the set of records (both the ones for training and
the other for NN approximations) in the present application, affects significantly the performance
of NN.

Assuming that seismic loading data are distributed lognormally the median spectrum % and the
standard deviation ¢ are calculated as follows,

T = exp [Z’ll lnfle,,-(T)) s (26)
5 [ziil (n(Ra(D) - 1n<fc)>2] ® (27)

where Rq;(T) is the response spectrum of the i-th record for period value equal to T'. The median
spectra for both directions are shown in Figs. 10 and 11.

In the first test case one hundred (100) training/testing patterns of the modulus of elasticity are
selected in order to train the first NN and one hundred (100) training/testing patterns of the spectral
values are selected to train the second NN. Ten out of them are selected to test the efficiency of
the trained network. In the second test case the training-testing set was composed by one hundred
fifty (150) pairs while in the third test case the set was composed by two hundred (200) pairs
while in both cases the second NN is trained using one hundred (100) training/testing patterns.
For the six storey frame of Fig. 9, eight modes are required to capture the 90% of the total mass.
For each test case a different neural network configuration is used: (i) NN1: 1-10-8, NN2: 16-20-1,
(ii) NN1: 10-20-8, NN2: 16-20-1 and (iii) NN1: 11-20-8, NN2: 16-20-1.

The influence of the three groups of random variables with respect to the number of simulations
is show in Fig. 12. It can be seen that 2000-5000 simulations are required in order to calculate
accurately the probability of exceedance of the design limit-state. The life safety limit-state is
considered violated if the maximum interstorey drift exceeds 4.0%.

Once an acceptable trained NN in predicting the maximum drift is obtained, the probability
of exceedance for each test case is estimated by means of NN based Monte Carlo Simulation. The
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Table 7. List of the natural records
Earthquake Station Distance Site
Dayhook 14 rock
1 o
Tabas, 16 Sept. 1978 Tabas 11 rock
Cape Mendocino 6.9 rock
i il 1992
Cape Mendocino, 25 April 199 Petrolia 8.1 soil
TCU052 1.4 soil
TCU065 5.0 soil
TCU067 2.4 soil
TCU068 0.2 soil
TCUO071 2.9 soil
TCU072 5.9 soil
TCU074 192 soil
Chi-Chi, 20 Sept. 1999 TCU075 2 5.6 soil
TCUO076 5.1 soil
TCU078 6.9 soil
TCU079 9.3 soil
TCU089 7.0 rock
TCU101 4.9 soil
TCU102 3.8 soil
TCU129 3.9 soil
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Table 8. Characteristics of the random variables

Probability

Random . Standard

. density Mean value TR
variable : deviation

function

E N 210 10 (%)

b N b* 2 (%)

h N h* 2 (%)
Seismic load Log-N z, Eq. (26) d, Eq. (27)

* dimensions from the IPE and HEB databases
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Fig. 12. Influence of the number of MC simulations on the value of pexceed for the three test cases

results for various numbers of simulations are shown in Table 9 for the three test cases examined. It
can be seen that the error of the predicted probability of failure with respect to the “exact” one is
rather marginal. On the other hand, the computational cost is drastically decreased, approximately
30 times, for all test cases.

9. CONCLUSIONS

The implementation of the hybrid simulation method, for the simulation of highly skewed non-
Gaussian fields, was found to be very effective. In a stochastic finite element procedure using Monte
Carlo simulation, a new non-Gaussian sample function has to be created in every simulation run
leading to excessive computational effort in the framework of large-scale structural problems, due to
the large sample size and the computing time required for each Monte Carlo run. A computation-
ally efficient non-Gaussian simulation method is therefore crucial for real time stochastic structural
analysis. The presented methodology is an efficient, robust and generally applicable procedure ca-
pable of simulating highly skewed narrow-banded non-Gaussian fields. Additionally, it was found
that the hybrid method can perform the simulation of non-Gaussian fields at a fraction of the
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Table 9. “Exact” and predicted values of pexceeda and the required CPU time

Number of Test case 1 Test case 2 Test case 3
simulations “exact” NN | “exact” NN | “exact” NN
Pexceed Pexceed Pexceed Pexceed Pexceed Pexceed
50 0.00 0.00 0.00 0.00 2.00 0.00
100 1.00 2.00 1.00 2.00 2.00 1.00
200 2.00 1.60 1.00 1.00 1.00 3.00
500 1.60 1.26 1.00 1.70 0.40 0.70
1000 0.90 0.81 0.90 0.67 1.00 0.86
2000 1.15 1.06 1.45 1.41 1.10 0.97
5000 1.12 1.04 1.30 1.24 1.32 1.18
10000 1.09 1.03 1.21 1.14 1.42 1.29
20000 1321 1.14 1.25 1.31 1.31 1.19
50000 1.26 1.16 1:22 1.31 1.36 1.21
100000 1.28 1.16 1.24 1.31 1.37 1.21
CPU time in seconds

Pattern selection - 2 - 3 - 5
Training = L - 9 = 12
Propagation - 25 = 25 - 25
Total 1154 34 1154 37 1154 42

computing time required by the existing methods. In the presented numerical test, which is a very
difficult test, about two orders of magnitude improvement in computing time is achieved with the
proposed method. Moreover, a very efficient procedure for the fragility analysis of structures based
on properly trained neural networks is presented. The neural networks are trained by means of a set
of intensity measures that can be easily extracted from the earthquake records. The methodology
of allows the use of Monte Carlo simulation for the calculation of the limit-state fragilities, thus
avoiding the simplifying assumption that the seismic data follow the lognormal distribution. The
presented formulation may be more complicated compared to other simplified approaches, however
it offers a different approach to an emerging problem in earthquake engineering leading to reduction
of the computational cost. The results obtained once combined with regional hazard curves can be
directly applied to the performance-based design of steel frames.
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