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This paper proposes a neural network model using genetic algorithm for a model for the prediction of
the damage condition of existing light structures founded in expansive soils in Victoria, Australia. It
also accounts for both individual effects and interactive effects of the damage factors influencing the
deterioration of light structures. A Neural Network Model was chosen because it can deal with ‘noisy’
data while a Genetic Algorithm was chosen because it does not get ‘trapped’ in local optimum like other
gradient descent methods. The results obtained were promising and indicate that a Neural Network Model
trained using a Genetic Algorithm has the ability to develop an interactive relationship and a Predicted
Damage Conditions Model.

1. INTRODUCTION

Damage to light structures founded in and on expansive soils occurs throughout the world. There
is a number of studies performed on damage prediction for light structures [4, 7], but no Predicted
Damage Conditions (PDC) Model has been developed for Victoria, Australia. Victoria is 228 000
km? in area and is the smallest and most densely populated Australian mainland state. It is bounded
on the South and East by the Indian Ocean, Bass Strait, and the Tasman Sea. Approximately 50%
of the surface area in Victoria is covered by moderate to highly expansive soils; mostly derived from
Tertiary, Quaternary and Volcanic deposits [14].

Volume change of the expansive soil with change in moisture content can cause damage to light
structures founded in and on the soil, such as houses and shallow pipelines. For example, a decade
ago, more than 50% of the 20000 houses owned by the Building Housing Commission (BHC)
required extensive repairs due to expansive soil movement. It is predicted that approximately 30 000
new dwellings will be affected annually by expansive soil movement, increasing the building costs
in Victoria alone, by AU$ 60M-90M [15].

The aim of this paper is to investigate the Interactive Relationship (IR) of the damage factors
influencing the behaviour of light structures on expansive soils using a Neural Network (NN) model
trained with weights generated initially by a Genetic Algorithm (GA) and to apply them to predict
the future damage condition in existing light structures in Victoria, Australia. Approximately 400
cases of damage to light structures were considered in this study. A hybrid training strategy using
Genetic Algorithm and back-propagation was used to train Neural Network where Genetic Algo-
rithm generates the initial weights for Backpropagation (FB) to complete the training process. The
training and learning process in Neural Network used the ‘initial’ weights obtained from Genetic
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Algorithm to determine the interactive relationship between the Damage Factor Influence (DFI)
such as Region (R), Construction Wall type (CW), Construction Foundation type (CF), Thornth-
waite Moisture Index old and new (TMIO, TMIN), Geology (G), Vegetation covers (V) and Age of
building when first inspected (A) was investigated. The performance errors were noted. Then the
interactive relationship was used to develop the Predictive Damage Condition model. To estimate
the accuracy of the model, the predictive error was calculated and compared to the original model
where only the individual Damage Factor Influence (DFI) was used.

Neural Network was chosen because it is fault tolerant [6] while Genetic Algorithm was chosen
because it improves the learning process in Neural Network where it generates the initial weights
for Neural Network. Genetic Algorithm can be used even though the error gradient information is
unavailable or when the transfer function of the neurons is not discontinuous Genetic Algorithm has
the ability to solve large, non-linear, and complex problems more accurately than other methods [26].
Genetic Algorithm is presumed to perform a global search of the weight space and should be less
likely to become stuck in a local minimum than feedforward backpropagation, which pursues only
a single route along the weight spaces [26]. However, it should not be regarded as a replacement for
other existing methods but rather as another optimisation approach.

2. LITERATURE REVIEW

Artificial intelligence techniques such as Neural Network and Genetic Algorithm are still new to
engineers in predicting the behaviour of expansive soils and the prediction of the location and
time of damage to light structures founded on expansive soils. Most of the studies involved the
investigation and prediction of movement of individual structure in a building for example beams
and footings caused by seismic movement and founded on non-expansive soils such as sand. The
techniques are however seldom used to predict settlement of foundation on cohesive soils such as
clay.

The first Neural Network which was inspired by biological nervous systems was designed by
McCulloch and Pitts (1943) cited in [5]. As in nature, the network function is determined largely
by the connections between elements. The goal of the network is to learn or to discover some
association between input and output patterns, or to analyse, or to find the structure of the input
patterns [1]. The learning or training process is achieved through the modification of the connection
weights between units. Given a sample of input and output vectors, Neural Network “learn” this
relationship, and store this learning into their parameters [13]. Neural Network can be used to
determine which variables or parameters are important and to build a model relating to those
parameters [3].

Genetic Algorithm is based on a Darwinian-type survival of the fittest strategy was invented
by [16] in the 1960’s. Most organisms evolve by means of two primary processes: natural selec-
tion and sexual reproduction [10]. The first determines which members of population survive and
reproduce, and the second ensures mixing and recombination among the genes of their offspring.
Potential solutions to a problem compete and mate with each other (cross-over) in order to produce
increasingly stronger individuals. This mixing allows creatures to evolve much more rapidly than
they would if each offspring simply contained a copy of the genes of a single parent, modified oc-
casionally by mutation [10]. Genetic Algorithm works on a random set of points in the population
by using a set of operators that are applied to the population. The different operators are scaling,
selection, reproduction, crossover, migration and mutation.

Examples of Artificial intelligence techniques using Neural Network and Genetic Algorithm in-
clude work by [8, 9, 12, 17-24]. [12] presented a model to locate and assess the damage occurring
at any position in a cantilever beam by backpropagation neural network considering displacement
and strain as input parameter to the network. From the review done by [23], it is evident that Neu-
ral Network has been applied successfully to many geotechnical engineering areas which includes
pile capacity prediction, settlement of foundations, soil properties and behaviour, liquefaction, site
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characterisation, earth retaining structures, slope stability and the design of tunnels and under-
ground openings. [17, 19-21] have adopted a Neural Network trained with Genetic Algorithm. The
performance of the model was better compared to just using an individual Artificial Intelligence
technique. The results indicated that Neural Network and Genetic Algorithm have the ability to
predict the potential damage to light structure on expansive soils when presented with any kind of
data be it with missing or with complete parameters. There is no doubt that Neural Network can
adapt to changes in the dataset as it can always be updated to obtain better results by preventing
new training examples as new data becomes available [19]. Genetic Algorithm on the other hand is
very useful in improving the learning process of Neural Network [21].

Neural Network trained with Genetic Algorithm was adopted in the development of the predictive
damage condition model and the interactive relationship between factors which influence damage
to light structures on expansive soils in this paper.

3. APPROACHES AND PROCESSES

Approximately 400 sets of data from Building Housing Commission database were used in this
paper. All the data was coded into numeric form. The data set was divided into nine categories
where eight categories are the input and one category is the output.

Input

There were eight categories for the input.

Regions (R)

The state of Victoria was divided administratively into six geographical regions, viz. Melbourne,
South East Victoria, North East Victoria, North West Victoria, West Victoria and South West
Victoria. Since most of the data from Building Housing Commission focused on Melbourne region,
the Melbourne region was divided again into nine smaller regions; inner, inner eastern, outer eastern,
western, southern, south east, north, north east and Mornington to give more precision to the
analysis. Table 1 shows the coding for numeric data.

Table 1. Numeric data of R

Input category for R | Numeric data
Inner Melbourne 1
Inner Eastern Melbourne 2
Outer Eastern Melbourne 3
Western Melbourne 4
South Melbourne 5
South East Melbourne 6
North Melbourne T
North East Melbourne 8
Mornington 9
South East Victoria 10
North East Victoria 11
West Victoria 12
North West Victoria 13
South West Victoria 14
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Construction Wall type (CW)

This category refers to the type of wall used for the light structure. Table 2 shows the coding for

numeric data.

Table 2. Numeric data of CW

Input category for CW | Numeric data

No data

Brick veneer

Cavity wall

Blocks

Clad frame

Solid brick/full masonry
Reinforced concrete
Precast concrete
Double brick

0

CO =1 O UV i W N =

Construction Footing type (CF)

This category refers to the type of footing used for the light structure. Table 3 represents the coding

for numeric data.

Table 3. Numeric data of CF

Input category for CF | Numeric data

No data

Concrete slab footing
Strip footing

Raft slab footing
Bluestone

Stump

Stiffened slab

0

DD U W N

TMI Old (TMIO) and TMI New (TMIN)

TMI is the classification of climate based on potential evapotranspiration, areal evapotranspiration
and rainfall [25]. TMIO was computed for 1940-1960 while TMIN was computed for 1961-1990.

Table 4 shows the coding for numeric data for both TMIO and TMIN.

Table 4. Numeric data of TMIO and TMIN

Input category for TMIO and TMIN

Numeric data

—25
-20
-5
. 0
5
10
30

1

N O O s W N
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Geology (G)

This category is the geological classification of the site by rock type in accordance with Geological
map of Victoria [14]. Table 5 shows the coding for numeric data.

Table 5. Numeric data of G

Input category for G | Numeric data

Quaternary 1
Tertiary
Volcanic
Silurian

Upper Devonian
Jurassic
Ordovician

N O Ot W N

Type of vegetation cover (V)

This category represents the type of vegetation currently existing on site such as built up area,
native grassland, native forests, horticultural trees and shrubs. This data was categorised based on
the Bureau of Rural Sciences map [11]. Table 6 shows the coding for numeric data.

Table 6. Numeric data of V

Input category for V Numeric data
Built Up 1
Annual Crops and Highly modified pastures
Native grassland and minimally modified pastures
Native forests and woodlands
Horticultural trees and shrubs

T s W N

Age (A)

This category refers to the age of structure when it was first inspected, following a report of damage.
Table 7 shows the coding for numeric data.

Table 7. Numeric data of Age

Input category for A (Years) | Numeric data

1to 10 1
11 to 20 2
21 to 30 3
31 to 40 4
41 to 50 b)
51 to 60 6
61 to 70 7
71 to 80 8
81 to 90 9
91 to 100 10
101 to 110 11
111 to 120 12
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Output

The Damage Classification (DC) was set as an output. Table 8 shows the numeric data of Damage
Condition. The damage classification refers to the Australian Standard, AS2870 [2] guideline. The
measurements were based on visual inspection. They were measured using simple instruments such
as a ruler and a spirit level to check for size of cracks and amount of movement. The measurements
were taken on interior and exterior walls, ceilings, floors and foundation of the light structure where
the movement occurs.

Table 8. Numeric data of DC

Description Damage classification
Hairline crack < 0.1 mm 0
Fine crack < 1 mm 1
Distinct crack < 5 mm with noticeably change in level 2
Wide crack > 5mm & < 15 mm with obvious change in level 3
Severe crack < 15 mm with disturbing change in level 4

4. DEVELOPMENT OF NEURAL NETWORK MODEL

The Genetic Algorithm and Neural Network toolboxes for MATLAB were used to support compu-
tational tasks. A feed forward neural network with eight input nodes, four neurons in one hidden
layer and one output layer were selected among other topologies of the Neural Network by using
trial and error search methods. The aim of the learning procedure in Neural Network is to update
the weights of the links connecting the nodes and to minimize the average squared system error
between the observed and the computed outputs [6]. Genetic Algorithm was used to initially gener-
ate the weights for Neural Network prior to the learning process. Figure 1 shows a model of Neural
Network trained by weights generated by Genetic Algorithm.

Fig. 1. A model of Neural Network trained using weights generated by Genetic Algorithm
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Since the data from the Building Housing Commission database is ‘noisy’ because of incomplete
data, Neural Network was chosen as it can handle noisy data. Genetic Algorithm on the other hand
was chosen because it cannot be easily ‘trapped’ in local optimum like Feedforward Backpropagation
and other gradient descent methods and also it strives to optimise the fitness value.

Genetic Algorithm
The parameters used in Genetic Algorithm toolbox for MATLAB were set as Table 9 [26].

Table 9. Parameters of Genetic Algorithm

Parameters Description

Population The population size = 80, Initial range = between —1 and +1.

The population size is used as a trade-off between the time of convergence and
the fitness value of the final result [26].

Fitness scaling A ranking mechanism is used in order to maintain constant selective pressure
as the algorithm progresses and the fitness values are closer together.

Selection A stochastic uniform selection mechanism is used.

Reproduction Every newly generated chromosome is unconditionally inserted into the popu-
lation of the next generation [26]. The reproduction type is children replacing
their parent. Elite children are the individuals in the current generation with
the best fitness value which automatically survive to the next generation. The
default value equals to 2 of elite count with a crossover function of 0.8 was
chosen.

Crossover Combining the vectors of a pair of parents creates crossover children. Here, an
intermediate function with a ratio of 1 was chosen.

Stopping criteria | The following are set in Genetic Algorithm as the stopping criteria.
Generations = 3000, stall generation = 50, time limit = oo, fitness limit = —oo
and stall time limit = oo.

Mutation Introducing random mutations to a single parent creates mutation children.
Gaussian addition was chosen because the data uses real numbers. The shrink
and scale controls were set to the default value of 1.

Variables For a two layer Neural Network model, the number of variables (V) for Genetic
Algorithm to calculate the weights is calculated using Eq. (1).
V = (mxn)+2n+1 (1)

where m is number of input and n is number of neurons in the hidden layer.

Neural Network

A feed forward Neural Network with eight input nodes, one hidden layer with four neurons and one
output layer was adopted. A supervised feedforward backpropagation was used where the output
corresponding to the input data is immediately available. The weights generated in Genetic Algo-
rithm were set in Neural Network. During the training phase of the Neural Network, the training
process continuously modifies the values of the weights until some previously agreed criteria are met.
An Activation Function is included in the Neural Network to allow for varying input conditions and
their effect on the output. The operation of the Neural Network comes from the processing of a series
of signals from input to hidden layer and from hidden layer to output. The following were used in
Neural Network:

1. Input to hidden layer

Sum input, X = ZIW + By (2)
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where IW is input multiplied by weights from input to hidden layer and By is the bias weight
for hidden layer neuron. Logsigmoid activation function (77,) was used to transfer the sum input
to hidden layer. Logsigmoid was used to ensure that the network is limited to a small range and
it can account for non-linear relationship in the network. Equation (3) shows the Logsigmoid
function,

Tr, = 1/(1 + exp(—X)). (3)

2. Hidden to output layer.

The sum of all the neurons in the processing from input to hidden layer was then fed in as a ramp
function (Tx) which acts as the activation function for the hidden to output layer. Equation (4)
shows the sum of signal from the input to hidden layer,

Sum input to hidden, Y = Z T, LW + B, (4)

where B, is the bias weight for the output layer. Then T was used to transfer the sum into the
output. It was used because the output has fixed values from 0 to 4. In this model, the maximum
and minimum of ramp function are 4 and 0 respectively,
Max when Y > upper limit,
Tpi=t ¥ when Y < upper limit and Y > lower limit, (5)

Min when Y < lower limit.

The performance error (Ep) of the Neural Network was then calculated using Eq. (6),

[T (e - Ou)?]
Ep = % : (6)

where dp is the target, O,y is the output and K is the number of data points.

4.1. Interactive relationship (IR) model development

From the training process, an interactive relationship model was developed. New dataset matrices
were developed in regards to the Interactive relationship of individual damage factor influence which
are Region (R), Construction Wall (CW), Construction footing (CF), TMIO, TMIN, Geology (G),
Vegetation (V) and Age (A). This was done to determine different combination of the interaction
and also its effect on the model. It also improves the performance of the predictive model. The
performance error for each of the matrix was noted. Table 10 shows the performance error for
Genetic Algorithm and Neural Network. The following illustrate the interactive relationship with
each damage factor influence.

Matrix Rk~ = [R(CW, CF, TMIO, TMIN, G, V, A)]
Matrix CWig = [CW(R, CF, TMIO, TMIN, G, V, A)]
Matrix CFlg = [CF(R, CW, TMIO, TMIN, G, V, A)]
Matrix TMIO = [TMIO(R, CW, CF, TMIN, G, V, A)]
Matrix TMINg = [TMIN(R, CW, CF, TMIO, G, V, A)]
Matrix Gk~ = [G(R, CW, CF, TMIO, TMIN, V, A)]
Matrix Vi~ = [V(R, CW, CF, TMIO, TMIN, G, A)]

Matrix Ag = [A(R, CW, CF, TMIO, TMIN, G, V)]



Damage factor influence of light structures on expansive soils 339

Table 10. Performance error for the matrix

. Performance error Performance error
for Genetic Algorithm | for Neural Network

Rir 0.260 0.222

CWigr 0.225 0.149

CFir 0.249 0.159

TMIOr 0.266 0.229

TMINr 0.237 0.180

Gir 0.249 0.208

Vir 0.223 0.178

Ar 0.230 0.198

Table 11. Best results for interactive relationship in each matrix interaction

Interactive Relationship | Connection weight
R*(TMIN) 1133
CW*(TMIN) 51.10
CF*(V) 72.73
TMIO*(CF) 4.32
TMIN*(A) 2152
G*(TMIO) 453F1
V*(TMIN) 31.81
A*(V) 32.21

The connection weights for each combination were calculated using Eq. (7).

Connection weight =
% Z {Z (connection of input-hidden)g x Z (connection of hidden—input)m} : (7)

The best 8 results from the 56 possible combinations selected on the basis of their connection
weights are summarised in Table 11.

4.2. Predictive Damage Condition (PDC) model

Another dataset was developed for the development of the Predictive Damage Condition model.
This is the combination of the original dataset with damage factor influence which are Region (R),
Construction Wall (CW), Construction Footing (CF), TMIO, TMIN, Geology (G), Vegetation (V)
and Age (A); and the dataset for the best results for interactive relationship (Table 11). A two
layer Neural Network was used with sixteen input nodes, one hidden layer with six neurons and
one output layer. Here, the same procedure was used to generate the weights for Neural Network.
Figure 2 shows the architecture of Neural Network for Predictive Damage Condition.

The results obtained after training the Neural Network with weights generated in Genetic Algo-
rithm are as below:

Performance error for Genetic Algorithm = 0.257,

Performance error for Neural Network = 0.215.
A predictive damage condition model was developed in accordance to the following equation,

PDC = f[R,CW, CF, TMIO, TMIN, G, V, A, TMIN(R + CW + V), TMIO(G), V(CF + A)] . (8)
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i

Fig. 2. Architecture of Neural Network for Predictive Damage Condition

Table 12. Property information

Damage Factor Influence | Description of input category | Numeric data
Region (R) Inner Melbourne 1
Construction Wall (CW) Brick Veneer 1
Construction Footing (CF) Concrete slab footing 1
TMIO -20 2
TMIN 10 6
Geology (G) Volcanic 3
Vegetation (V) Built up area 1
Age (A) 5 years old 1

Equation (8) is rewritten as

PDC = f[R,CW, CF, TMIO, TMIN, G, V, A, X, Y, Z] (9)
where

X = f[TMIN * (R + CW + V)],

Y = f[TMIO x G,

Z = f[Vx(CF + A)].

From Eq. (9), the damage condition can be predicted for an existing light structure. For example,
if a property has the following information as in Table 12, then the damage condition of the property
can be predicted using Eq. (9).

PDC = f(R,CW,CF,TMIO, TMIN, G, V, A, X,Y, Z) = f(1,1,1,2,6,3,1,1) = 0.
PDC = 0 means the property has a minor damage with hairline crack < 0.1 mm (ref. Table 8).
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4.3. Model without interactive relationship (Original model)

This model takes into account only individual effect of damage factor influence. This model was
developed to compare with the Predictive Damage Condition model. A dataset with damage factor
influence was trained using the same procedure. The results obtained after training the Neural
Network with weights generated in Genetic Algorithm are as follows,

Performance error for Genetic Algorithm = 0.281,

Performance error for Neural Network = 0.220.

From the performance error point of view, Predictive Damage Condition model was much better
than the original model as it has low performance error. Thus, the Predictive Damage Condition
model will give a better prediction than a model without interactive relationship.

4.4. Test of model

The Predictive Damage Condition model with interactive relationship was tested using a dataset
which was different with the learning dataset. The tested result of Predictive Damage Condition
model was also compared with similar tested result of original model. The aim was to see the
accuracy of the proposed model. It was found that the prediction error was 46% compared to the
original model with predictive error of 49% therefore interaction model was better.

5. FINDINGS

The following findings were determined for the prediction of damage condition in regards to damage
factor influence of light structures on expansive soils in Victoria, Australia:

1. Neural Network trained using hybrid Genetic Algorithm and Backpropagation. By generating
weights in Genetic Algorithm, it can be seen that it improves the performance of the model
when training Neural Network. From Table 10, all the performance error improved in average of
30% after training the Neural Network with weights generated from Genetic Algorithm.

2. Interactive Relationship model. From the results, it was obvious that there was an interactive
relationship between all the damage factor influence especially TMIN, TMIO and Vegetation.
This means that one way or another, the individual damage factor influence rely on each other.
As an example, the designs of walls and footings were established with respect to TMIO.

Codes such as Australian Standard, AS2870 [2] did not accommodate change in TMI over the life
of the structure. Therefore, in Table 11, Construction Wall relies on TMIN, as the design should
incorporate TMIN. Here, the performance error was also the lowest among all the interactive
relationship. This shows that the interactive relationship between Construction Wall and TMIN
was the most significant.

3. Predictive Damage Condition model. A new model for the prediction of damage, (PDC model),
was developed. It can be seen that the Predictive Damage Condition model was better than the
original model as it gives a more accurate result. Although the error difference between the two
was small, it is still suggestive that interaction between inputs should be seriously considered.

6. CONCLUSION

From the analysis, a model of predicted damage condition for light structures founded in and on
expansive soil was developed. The preliminary results are promising and an improvement on existing
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predictive systems. The prediction model based on Neural Network and Genetic Algorithm proved
to be useful in estimating potential damage to light structures founded in and on expansive soils in
Victoria, Australia.

All the damage factors were interrelated in one way or another. The damage factor influence;
Region, Construction Wall and V showed that they were very dependent on TMIN while Geology
was dependent on TMIO and Construction Footing and Age was dependent on Vegetation. The
analysis results show that TMIN, TMIO and Vegetation were dominant and important in relation
to their effect on damage condition. There is scope for developing a set of independent damage
factors to improve the model.

The results indicate that Neural Network and Genetic Algorithm have the ability to develop an
interactive relationship and to predict the potential damage to light structure when presented with
“noisy” data. The advantage of Neural Network was that it can always be updated to obtain better
results by presenting new training examples as new data becomes available. Genetic Algorithm on
the other hand was very useful in improving the learning process of Neural Network.
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