Computer Assisted Mechanics and Engineering Sciences, 14: 345-352, 2007.
Copyright © 2007 by Institute of Fundamental Technological Research, Polish Academy of Sciences

HPC strength prediction
using Bayesian neural networks

Marek Stonski

Cracow University of Technology, Institute for Computational Civil Engineering,
ul. Warszawska 24, 31-155 Krakow, Poland

(Received in the final form April 23, 2007)

The objective of this paper is to investigate the efficiency of nonlinear Bayesian regression for modelling
and predicting strength properties of high-performance concrete (HPC). A multilayer perceptron neural
network (MLP) model is used. Two statistical approaches to learning and prediction for MLP based
on the likelihood function maximization and Bayesian inference are applied and compared. Results of
experimental data sets show that Bayesian approach for MLP offers some advantages over classical one.
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1. INTRODUCTION

Concrete is a heterogeneous material the properties of which depend on the properties of its compo-
nents. Forster defines in [5] a high—performance concrete (HPC) as “a concrete made with appropriate
materials (superplasticizer, retarder, fly ash, blast furnace slag and silica fume) combined according
to a selected mix design and properly mixed, transported, placed, consolidated, and cured to give
excellent performance in some properties of concrete, such as high compressive strength, high den-
sity, low permeability, and good resistance to certain forms of attack”. Due to the high variability
of effects of material properties, mix designs and manufacturing technologies creating HPC prop-
erties, concrete mix designing methods are mainly based on laboratory experiments and previous
knowledge and technology.

Feed-forward neural networks (FFNNs) are used to perform non-linear functional mappings be-
tween a set of input variables and an output scalar variable. FFNNs have successfully been applied
to the analysis of many problems in civil and structural engineering [14]. Bayesian techniques have
been widely used in prediction problems and can be incorporated into the neural network ap-
proach. Bayesian methods for neural networks were introduced, among others mainly by MacKay
and Neal [8, 11].

Bayesian neural networks (BNNs) have proved to be an efficient tool for the analysis of regression
problems. In paper [7] BNN model was applied to prediction of concrete properties and the Bayesian
approach gave better results than alternative non-Bayesian methods in the case problem. A similar
problem of predicting concrete fatigue failure with BNN was described in paper [13]. Bayesian
neural network was also used to prediction of deformed and annealed microstructures [1], in fault
identification in cylinders using vibration data [9] and for prediction of response spectra [15].

In the paper HPC was assumed to be a mixture of six components. Data on about 340 mixes
were taken from various publications, and collected and described in [6] by Kasperkiewicz, Racz
and Dubrawski.
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2. BAYESIAN NEURAL NETWORKS FOR REGRESSION

Nonlinear parametric models such as multilayer perceptron (MLP) and radial basis function (RBF)
neural network models are efficient tools for the empirical modelling of relationships for multivariable
data sets [2]. The data set consists of a subset of input variables and a subset of corresponding target
variables. It is assumed for regression problems that the target variable is related to an unknown
model’s prediction by the following equation,

tn = Y(Xn; W) + €n, (1)

where t, is a scalar target value, y(x,; W) is a regression function for an input vector x,, and a vector
of model parameters w. The last term in Eq. (1), €, , is a noise component.

It is assumed that the unknown function, represented by a regression model, underlies the process
which has generated the data set. The task is to infer the function f(x,;w) from the given data
and make a prediction for a new input vector x.

MLP neural network model with one hidden layer of adaptive units (neurons) is used, which can
be expressed as the following equation,

y(x;w) = ijg (Z Wi + wJ()) +wp |, (2)

where d is the number of inputs, H is the number of neurons in the hidden layer. Function g(-) is a
nonlinear, sigmoidal activation function of hidden units, function f(-) is a linear activation function
of an output neuron and w is the vector of parameters of the MLP model [2].

In the standard, maximum likelihood (ML) approach, the unknown parameters of MLP model
are learned (estirnated) by minimizing an error function

=3 Z Y(xXn; W )]2, (3)

for a given training data set D = { (x1,t1), (x2,%2), ..., (Xn,tn), .., (XN, tN) }.

For small training data sets, the error function minimizing can lead to over-fitting of the training
data and unsatisfactory prediction for a testing data set. The standard approach to the problem
of poor generalization is related to the modified procedure by adding a regularization term to the
error function (4) ,

L M
E(w)=Ep(w)+ A i _;_ w]2- , (4)
i=1

where M is the number of parameters and the hyperparameter A controls the smoothness of the
estimated relationship.

The Bayesian approach to neural networks learning and prediction processes is based on the
Bayesian inference and integration of the parameters of MLP model instead of searching for a single
vector of the parameters [2, 3]. In this approach all weights are treated as random variables. The prior
distribution p(w | @) over weights is firstly defined. It formalizes beliefs about the true parameters
before observing the data. It is generally assumed that the prior distribution is a spherical Gaussian
distribution with the zero mean and inverse variance (precision) hyperparameter a. A Gaussian
noise model p(e, | B) is also adopted with the inverse of variance parameter called precision and
defined by B = 1/a%. The noise model describes how the output variable is corrupted by the noise
process. A detailed description of the Bayesian approach to neural networks can be found in [2].

After observing the data set D, Bayes’ theorem is used to update the beliefs and the posterior
probability distribution over weights p(w | t, a, 8) is computed

p(t|w, B) p(w|a)

p(w |t,0,6) = FEop PR

(5)
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where p(t | w, ) is the likelihood function, which for independent and identically distributed (i.i.d.)
data set is defined as

N
|W,ﬂ Hpt'nlwaﬂ :_H 27‘(’0’ I/Zexp[ {tn'_ (xna )}2 , (6)

202

where 02 = 1/ and p(t |, () is a normalizing factor of the form

p(t] 0 B) = / p(t | w, B) p(w | @) dw. (7)

For regression problems, what is of main interest is making the prediction of ¢y for a new
value of xy41. In the non-Bayesian approach with regularization, a point prediction is given by
the model output y(xn+1; Wprs), Eq. (2), using the point estimate of neural network parameters
wprs. In Bayesian approach, instead of point prediction, the predictive distribution over target
variable ty41 is computed applying the sum rule of probability and marginalizing out the weight
vector w. This leads to the following equation

p(tN-i—-l IX.N+1,t,a,,B) = /p(tN-l-l |XN+1,W,ﬁ)p(W|t,Ot,ﬁ) dW, (8)

assuming that the hyperparameters o and 3 are known.

In the fully Bayesian framework, also the uncertainty over the hyperparameters should be taken
into account by defining the prior distributions p(c) and p(3) which are called hyperpriors. Then
the full posterior distribution is defined by

p(t|w,B) p(w|a)pla)p(B)
p(t) ’

where the denominator (normalizing term) is

p(w,a,Bt) = (9)

p(t) = / p(t | w, B) p(w | ) p(e) p(B) dw dar dB. (10)

Finally, the fully Bayesian prediction is computed evaluating the predictive distribution of the
form

p(tn41 | XN41, ) = /P(tN+1 |xN41, W, 0) p(W,a, | t)dw da dp, (11)

using the posterior distribution p(w,a, 3 |t).

Because the Bayesian prediction is based on integrations in the parameter and hyperparameter
space over all parameters and hyperparameters, in general it is analytically intractable and the
approximation techniques have to be used. These methods are in general divided into two groups:
deterministic and stochastic. The integration can be performed using a local Gaussian approximation
to the posterior distribution, which method is known as the Laplace approximation. Also, more
general variational methods called variational inference or variational Bayes can be used. They
are based on minimizing the Kullback-Leibler divergence which is interpreted as a measure of the
dissimilarity of two distributions. These methods are described in the textbooks [3, 8].

In the paper a stochastic method based on hybrid Monte Carlo algorithms developed for Bayesian
neural networks by Neal [11, 12] is applied. In the Monte Carlo approach the integrals are approxi-
mated by the finite sums of the form

[ 61wy ptov ) dw = 3 e w0, (12)
g==1

where w; are samples of weight vectors generated from distribution p(w |t).
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3. THE HPC DATA BASE

Data on about 340 mixes were taken from various publications collected in [6]. The input vector z
consists of six variables defining the amount of cement (C), water (W), silica (S), superplasticizer
(Su), fine aggregate (FA), coarse aggregate (CA), all in kg/m3. The output variable ¢ is the 28-day

compressive strength f., in MPa.

Table 1 shows the input and output variables details (range, median, mean and standard deviation
of data set used in modelling the relation). The corresponding Fig. 1 represents graphically statistical
properties of the variables with the aid of the box and whisker plot. The relationships between the

input variables and output variable f] are also shown in scatterplots in Fig. 2.
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Fig. 1. Box and whisker plot for HPC data set
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Fig. 2. Scatter plots for HPC data set
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Table 1. Statistical properties of input and output variables

Number Variable Range | Median | Mean | St.Dev.
C |kg/m?| | 94-1585 | 449 473 214
W [kg/m3] | 61-540 160 178 79
S |kg/m3] | 0-298 22.5 32.8 41.2
Su [kg/m®] | 0-38.1 7.6 9.1 7.6

FA [kg/m®] | 0-1760 | 750 769 267

CA [kg/m3] | 0-1443 | 1038 900 350
f[MPa] | 2.8-135 | 71.9 2.2 26.8

N O O W N

4. HPC COMPRESSIVE STRENGTH PREDICTION

4.1. Empirical formula

The 28-day HPC compressive strength f. can be computed using de Larrard’s empirical formula [4]

] Kch
— 1
fe 1+3.1W/C . (13)
( 1.4—0.4exp(—115/C) )

where K}, is the coefficient which takes into account the effects of aggregate characteristics on
concrete strength (the commonly assumed value is K}, = 4.9) and R, is the actual 28-day compressive
strength of cement in MPa. In Fig. 3 the 28-day HPC compressive strength f. as a function of W/C
and S/C based on Larrard’s formula is plotted.
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Fig. 8. The 28-day HPC compressive strength f. as a function of W/C and S/C based on Larrard’s
formula computed for K = 4.9 and R, = 45 MPa

4.2. Neural prediction

The 28-day compressive strength f. was defined as a function of 6 variables i.e. amount of cement
(C), water (W), silica (S), superplasticizer (Su), fine aggregate (FA) and coarse aggregate (CA).
The problem of predicting the 28-day compressive strength f. was formulated as a mapping from
the input vector & to the scalar output ¢.
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After the preliminary experiments, a multilayer perceptron neural network (MLP) model with
a single hidden layer of ten hyperbolic tangent units (neurons) and linear output unit was used to
model the relationship between the inputs and the output,

10 6
y(x;w) = Z'wjg (Z WiBi+ wjo> + wp . (14)

The experiments were performed using 346 examples (231 for training and 115 for testing) which
are depicted in Fig. 2. Both the input and output variables were first standardized to zero mean
and unit standard deviation by the following transformation,

== P (15)
1

where Z; is an average value and s; is the standard deviation

By == = ir’-’ i g i(m’.’ — &) (16)
[ 1 N
i n=1 N -1 n=1

Two statistical approaches to learning and prediction for MLP were used. The first approach
was maximum likelihood (ML) and the second one was the Bayesian inference with stochastic
approximation based on Hybrid Monte Carlo (HMC).

Maximum Likelihood neural network (MLNN) model was trained using scaled conjugate gra-
dient method implemented in MATLAB Netlab Toolbox [10]. The network weights were initially
randomized from a Gaussian distribution with the zero mean and unit variance. The total number
of 100 iterations of the optimization algorithm (epochs) were used. After learning the “optimal”
weights vector w* was applied to the prediction for a new input vector xy,1 which for MLNN is
a point prediction y(xy41, w*).

4.3. Bayesian neural prediction

Learning and prediction for the Bayesian neural network (BNN) model was done using Gibbs sam-
pling for the hyperparameters and Hybrid Monte Carlo (HMC) sampling method for the weights,
which were implemented in Flexible Bayesian Modelling (FBM) software [11]. In the paper four prior
distributions p(w | a) over four different groups of weights were defined to be spherical (isotropic)
Gaussian distributions with zero mean and four different inverse variances (precisions) hyperparam-
eters a. Also hyperpriors for hyperparameters a were assumed to be inverse Gamma hyperpriors.
The normal noise model p(e, |0%) was defined with the variance hyperparameter o2 and inverse
Gamma hyperprior for 2. Prior specification for Bayesian MLP model in FBM notation was

net-spec log 6 10 1 / - x0.05:0.5:1 0.05:0.5 - x0.05:0.5 -1
model-spec log real 0.05:0.5

The main HMC parameters had the following values: length of individual chains was 50, step size
was 0.5 and persistence parameter was 0.9. The burn-in stage contained 30 iterations and the actual
sampling 240 iterations from which 20 samples of weights were stored for the final HPC compressive
strength predictions.

5. RESULTS

In this section the Bayesian neural network (BNN) and Maximum Likelihood (MLNN) neural net-
work models are compared on the base of the following error formulae:
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— root-mean-squared (RMS) error

\%4
ib
M8 = s )% 1
RMS = \| 57 3 (tn = o) (17)

— average percentage (AP) error

1 v

APz |

n=1

Also the coefficient of correlation r was computed,

Yonei(tn = B)(yn — 9)
1‘:=1(tn 5 f) ZZ:l(yn ) :

where ¢ and ¢ are mean values of targets t, and predicted values y, , respectively.

The computed errors and the coefficient of correlation for learning (L) and testing (T) patterns
are presented in Table 2. For BNN model the errors are evaluated using the predictions of 20
NNs samples generated from the posterior distribution approximated using Hybrid Monte Carlo
method. For MLNN model, the errors presented in Table 2 are computed using the best Maximum
Likelihood neural network (bMLNN) taken from the set of 20 MLNNs with different initial weights
values generated from the Gaussian distribution with zero mean and unit variance. The best MLNN
was taken with respect to the minimum testing error.

- 100%. (18)

th — Yn
tn

Table 2. Comparison of generalization performance in predicting HPC compressive strength for Bayesian
neural network (BNN) based on 20 NNs samples and the best Maximum Likelihood neural network (bMLNN)
taken from the set of 20 examined MLNNs using 241 learning (L) and 115 testing (T") patterns

Model RMSE(L) APE(L) r(L) | RMSE(T) APE(T) r(T)
BNN 5.1 6.4 0.976 14.8 19.1 0.887
bMLNN 6.6 9.0 0.960 16.9 18.1 0.848
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Fig. 4. Predicted HPC compressive strength values compared with measured values using Bayesian neural
network (left) and the best Maximum Likelihood neural network (right)
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In Fig. 4 the measured HPC compressive strength values with the predicted values are plotted
for both learning and testing patterns. For testing patterns also 1o error bars are depicted, cor-
responding to the estimated standard deviation of the assumed Gaussian noise model, which are
oBNN = 6.4 MPa and opvnny = 6.6 MPa. For MLNN model this estimated standard deviation is
equal to the learning RMS error.

6. CONCLUSIONS

Some conclusions from the results of the experiments can be drawn. The Bayesian approach applied
to learning and prediction for MLP neural network has better generalization performance than the
classical approach based on the Maximum Likelihood (ML) principle. The ML approach is not able
to control sufficiently the complexity of the neural model compared with the BNN model.

The results have confirmed the feasibility of using BNN to model the unknown relationship
between the input and output variables exploring only experimental data. The great uncertainty
in the prediction is due to the intrinsic noise in the training data. Smaller uncertainties can be
achieved through the use of a larger and more accurate data set.
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