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The goal of this contribution is to provide, based on the asymptotic homogenization method, helpful
exact formulae to compute the overall stiffnesses and engineering moduli of a transversely isotropic two-
phase fibre reinforced composite with isotropic constituents. Comparison of the exact solution with known
bounds is shown. In certain cases a bound is very close to the exact solution over a large interval. The
bound then could be used as a good approximation to the exact solution. The exact formulae explicitly
display Avellaneda and Swart’s microestructural parameters, which have a physical meaning, and provide
formulae for them. Hill’s universal relations follow from the formulae. Limiting cases of rigid and empty
fibers are included. An application of these results to improve bounds for the effective energy density of
nonlinear dielectric fibrous composites is shown. Another application is related to bone poroelasticity.
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1. INTRODUCTION

This paper is concerned with the problem of finding effective properties of a two-phase fibre-
reinforced composite whose constituents are isotropic elastic. The fibres are arranged in an hexagonal
array. The fibre cross-section is circular. Recently, [6] and [14] derived exact closed-formulae for the
effective coefficients of a more general case of this composite, with the individual phases possesing
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the elastic and piezoelectric transversely isotropic symmetry, by applying the asymptotic homoge-
nization method. Such derivation is based on the solution of the corresponding local problems by
using the potential methods of a complex variable and the properties of doubly periodic Weier-
strass and related functions, as in [10, 11, 13, 15], for the case of square symmetry and isotropic
constituents. The basis of all these works are in [5]. The homogenization method is well-known.
References to text books and many applications can be found in [6]. Here exact closed-form formu-
lae are provided directly from the formulation of [6] in a way that is suitable for a relatively easy
computation. This specialisation also allows the obtention of explicit closed-form formulae for the
limiting cases of empty and rigid fibers. The importance of these results to obtain improved bounds
for nonlinear fibrous composites based on the variational formulation of [18, 19] is illustrated in two
examples. Another application related to bone poroelasticity is given.

Section 2 starts with the statement of the problem, introducing the effective stiffnesses and en-
gineering constants. Section 3 gives the exact closed-form formulae for the overall properties of the
two-phase composite with isotropic constituents and hexagonal symmetry. Analogous formulae are
also given for the two limiting cases of empty or rigid fibers, the derivation of which are included in
Appendices C-E. In Sec. 4 several examples are shown; comparison among the exact solution and
known bounds is shown. Two examples of applications for bounding the effective energy density of
nonlinear dielectric composites is also dealt. Note that the problem of dielectrics is mathematically
equivalent to those of thermal and electric conductivity, magnetic permeabilities or diffusion coef-
ficients; thus, the results given in this paper apply to the previously mentioned physical properties
as well. Some final remarks are contained in Sec. 5. Appendix A defines parameters which appear
in the exact formulae. Appendix B defines vectors, matrices and series relevant to the formulae.

2. STATEMENT OF THE PROBLEM

A two-phase fibre reinforced composite is studied here in which the properties of the constituents
are homogeneous and elastic. The Oz3 direction is the axis of symmetry. The fibers have a circular
cross-section and they are periodically distributed without overlapping in directions parallel to the
Oz, axes and the lines with slope at an angle 7/3, corresponding to hexagonal symmetry (Fig. 3
Thus, the composite effective properties are transversely isotropic. The non-zero terms of the stress-
strain constitutive relation may be written as a function of five independent parameters k*, [*, n*,
p* and m* as follows:

1 P "
5(011 + 092) = k*(e11 + €22) + l¥ess,

033 = [* (€11 + €22) + n*ess,

011 — 092 = 2m* (€11 — €22), (1)
032 = 2p”e3y,
031 = 2p”es,

*
o12 = 2m’e1g,

where o5 are the components of the stress tensor, the indices 7, j range from 1 to 3, the components
of the strain tensor ¢;; are defined by

1 8u1; Buj
51]“"2 <a$j+3$i), (2)
here the components of the displacement vector are u;; k* is the plane-strain bulk modulus for

lateral dilatation without longitudinal extension; [* is the associated cross-modulus; n* is the
modulus for longitudinal uniaxial extension; p* and m* are, the rigidity moduli for shearing in the
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longitudinal and in any transverse directions, respectively. The engineering constants are related
to these moduli through

Ef =n* —1?/k* = n* — 4k*(v))2,

vE = 1*/2k*,

Ef = 4k*m*/(K* + n*m*/E}) = 2(1 + v;)m*,
vi = (k* —n'm*/E7)/(k* + n*m* | Ey),

(3)

where the subindices a and t refer to an axial or transverse property, respectively. The Young
moduli are denoted by E;, Ef and the Poisson ratio by v} and vf. Also subindices 1 and 2
correspond to a quantity related to the matrix and by the fiber, in that order. Bulk and ridigity
moduli of the phases are defined by K and p, respectively. The volume fraction per unit length
occupied by the matrix is V; and by the fiber Vo = mR?/sin(n/3) so that Vi + V5 = 1. The Voigt
or arithmetic mean of a certain property are given below as

Ky, = KiVi + K3 V3,

(4)
o = V1 + paVa.

Y2
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Fig. 1. Hexagonal unit cell

The contrast of a property across the matrix-fiber interface is determined by means of the double
bar notation as

| K || = K1 — Ky,

o S )

The main purposes of this paper is to produce helpful exact formulae to compute overall stiff-
nesses and engineering moduli; including limit cases for empty and rigid fibers; and to show their
importance for obtaining improved bounds for nonlinear fibrous composites.
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3. TWO-PHASE ELASTIC COMPOSITE

In a recent study, [6] analysed a similar fiber-reinforced composite with the same geometry except
that both elastic constituents have transversely isotropic properties. The composite overall param-
eters are obtained by means of the asymptotic homogenization method, the application of the
Kolosov-Muskhelishvili complex potentials and properties of doubly periodic functions. The final
formulae (Egs. (3.15), (3.16), (3.33) and (3.34) in [6]) can be used for isotropic components as well.
The transversely isotropic material parameters, k, [, n, p and m, are related to the isotropic material
parameters by k = K +pu/3,1 = K —2u/3, n = K +4u/3, p=m = p with K = E/[3(1 —2v)] and
p = E/[2(1 + v)] being the conventional bulk modulus and shear modulus, respectively. Although
the constituents are isotropic the overall properties of the hexagonal array have 6mm symmetry.
The substitution of these produces the formulae

ki =Ko+ /3= Va || K + /3 |* Ki/p,
=Ky —2u/3-Va || K+p/3 ||| K —2u/3 || Ki/m,
n =Ky +4u,/3 = Vo || K —2u/3 ||” Ki/p, (6)
pi=m [l =2V || p || Pif (2 + p2)],
mi =p1—Va || p || M,
where

=1 [V1 +(1+ nl)DiVZM,:Wp] /B;,

~ 1-1
- [1 +x Ve~ x?v,’-,"M;lvp] , (7)
Mi = (1+ 1) B/ |1+ R*H; - VEMIVE]

The parameters A;, B;, C;, D;, E;i, Fy, Gy, xu, 5 (j = 1,2) and x;, which appear in (7) and
(B2)-(B4), are collected in the Appendix A. The subindex 4 used in (6) and (7) refers to the general
case when the inclusion is elastic and the constituents are isotropic. The infinite order vectors Vo,
Vp, Vi, Vim and matrices Mg, My, M, are given in Appendix B. This includes the para.meter
H; as well as important properties of convergent series related to doubly periodic functions. The
superindex 7" denotes a transpose vector.

The above overall properties k7, I, nf, p} and m} of (6) are seen to depend on the isotropic
caracteristics of the components, the volume fraction filled by them through the radius R of the
fiber circular cross-section and the array periodicity by means of the lattice sums S, Tk. The
three quantities K;, P; and M; that appear in (6) are, in fact, relatively easy to compute. Enough
accurate results are obtained after truncation to the second order of the infinite order vectors and
matrices. The powers of R, a number less than one-half appear frequently as can be seen in (B1)-
(B3). The series involved also converge very quickly thus simplifying considerable the computational
effort.

The structure of (6) leads to an important result. The expression K; may be eliminated from
(6)1,2,3 to produce the well-known universal relations of 8], viz.,

”K+/1'/3” :kZ_Kv_ﬂv/3=l;—Kv+2Nv/3 (8)
1K —2u/3] ~ B=Kot 203 7 — Ky — &3’

Thus the knowledge, say, by an independent method or otherwise, of one of the properties fixes
the other two. The structure of (8) lead [1] to introduce two microstructural parameters Ay, and A,,
having a simple physical interpretation, namely, they represent, respectively, the mean transverse
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hydrostatic strain and mean deviatoric strain in the fiber phase per unit applied transverse pressure
and shear to yield

Ap =1+ | K = p/3 || Ki/pm,
Ap = M;.

Thus exact formulae is also obtained for Ay and A,,.

9)

3.1. Empty fibers

The case of empty fibers is of interest for poroelasticity theory and their applications. See, for
instance, a recent survey article on bone poroelasticity [4]. From (6) and (7), closed-form expressions
can be derived in the limit, when the fiber properties tend to zero. The final formulae are

ke = (K14 p1/3)Vi — Va(K1 + p1/3)° Ko/,
le = (K1 —2pm/3)V1 — Va(K1 + 21 /3) (K1 — 2u1/3) Ke/ a,
nk = (K1 + 3u1/4)Vi — Va(K1 — 3u1/4)* K./, (10)
pe = (1 - 2V, F,),
mg = pu1(1 — 2V M),

where K., P, and M, can be obtained from (7) by substituting there the values of the parameters A;,
B;, C;, D;, E;, x; and k1, when the inclusion properties vanish. This has been shown in Appendix C.
They are

_AezBezEezle,
C,==2D, = -1/G, (11)
k1 = (K1 + Tua/3) /(K1 + pn/3).

The universal relation (8) also follows by setting K3 = us = 0, or from the elimination of K, in
(10)1,2’3.

3.2. Rigid fibers

Expressions (6) and (7) also allow the consideration of another case of interest, that of rigid fibers.
Results of this Subsection can be useful to investigate global behavior of nonlinear fibrous elastic
composite, by applying the variational inequalities reported in [19]. An application to dielectric case
will be shown in the next Section. Here the limit of very large values of the fiber properties is taken.
The relevant remaining quantities become

kr = (K1 + m/3)(1 + VaK;),
pr = m(l +2VaF), (12)

my = pu (1 + VoM, ),
where K, P, and M, are given by

Kr — | + I(1+1p,1/§[2a = (1 + Kl)BrVZ‘M]:l{?p/‘/l]/‘/lv

Py =[1— Vo= VIM;V,) 7Y, (13)

M, = (1 +&7TY/[1 + R2H, — VI M 1V,).



310 J. Bravo-Castillero et al.

The parameters A,, B, Cr, and x, in (12), (13), and in the infinite order vectors and matrices
(see Appendix B), take the values

— A = =14
B, = _"‘31_17 (14)
€= —2#1/V1(K1 4 7}11/3),

whereas Hy = H is given by (B4), G, = G by (Al)7 and 1 by (Al),.

Equations (14)—(15) are derived from (6) and (7) by calculating the limit as (ug, K2) — (00, 00).
In this case, the evaluation is not direct and requires of some intermediate steps that are illustrated
in Appendix E. A summary of the limits of A;, B;, C; and x as (u2, K2) — (00,00) is given in
Appendix D.

Note that

PSPl =2V, (15)

4. NUMERICAL EXAMPLES
4.1. Two-phase elastic composite

The material properties, of the binary composite considered here, were taken from [20]. The epoxy
matrix Young modulus is E; = 3.45 GPa and Poisson ratio is v; = 0.35; correspondingly, the
glass fibers values are Fy = 73.1 GPa and vy = 0.22. It is of interest to compare the exact results
calculated using the asymptotic homogenization method (AHM) with upper and lower bounds of
normalized material and engineering constants as a function of the fiber volumetric fraction V; up to
the percolation limit, which is V5 = 7/4sin(7/3). This is shown in Fig. 2. The plane bulk modulus
ratio k*/K; and the plane rigidity ratio m}/u, are plotted in Figs. 2a and 2b, respectively. The AHM
curve is shown as the continuous line; the upper (lower) bound is plotted as the dash-dotted (dotted)
line. The axial and transverse Young modulus ratio E}/E, and E;/E;, are displayed in Figs. 2c
and 2d, respectively. In Figs. 2a, b, ¢, d, the typical stiffening behaviour of the reinforcing fiber is
shown. The property becames stiffer as the volume fraction V5 of the fiber increases. The axial and
transverse Poisson’s ratio normalized relative to the matrix value v} /vy and vf /v appear in Figs. 2e
and 2f, respectively. The bounds due to Hill and Hashin were taken from [3] for £*, m*, E}, v} and
from [7] for Ef and v{. It is found that the AHM solution always lies between the bounds. Two
extreme cases are shown in Figs. 2c and 2f. In the former case the bounds lie on top of each other,
as the exact solution. In the latter case, the exact solution is not close to the bounds. On the
other hand, the exact solution and a bound are very close to each other; see Figs. 2a, b, d for
closeness to the lower bound and Fig. 2e to the upper bound. This means that the simple formulae
given by the bound approximates the exact solution very well in almost all the volume fraction
interval.

As the next example, the plane dimensionless properties dependence on the ratio puo/p; against
volume fraction V5 in Figs. 3a, b, ¢, d. The shear modulus ratio pug/u1 ranges over 0 (empty fiber;
full dotted line), 0.9 (dashed), 20 (dash-dotted), 120 (dotted line) and oo (rigid fiber; continuous)
for the ratios of the transverse bulk modulus kf/K in Fig. 3a, transverse shear modulus m;/ju;
in Fig. 3b, transverse Poisson’s ratio v} /vy in Fig. 3c, and, finally, transverse Young’s modulus
Ef/E; in Fig. 3d. A typical fanning behaviour of the curves (non-intersecting) with fixed ratio
p2/p as fan ribs is shown in Figs. 3a, b, d. The empty and rigid cases bound all others. The curve
corresponding to empty fibers is monotone decreasing, characteristic of a fiber-weakened composite.
As the material in the fiber becomes stiffer, the composite becomes stiffer so as to reach the limiting
rigid behaviour, which is monotone increasing. Note that the composite is weakened (reinforced)
when po/p1 < 1(> 1). A different behaviour is shown in Fig. 3c for v} /vy as far as pg/p; > 1;
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Fig. 2. For glass fibers in epoxy. Plots, versus fiber volume fraction Va2, of dimensionless effective plane

a) bulk k7 /K1, b) shear m]/u; c) axial E;/E1, d) transverse Young’s E; /E, moduli; normalized effective,

e) axial v /v1 and f) transverse Poisson’s ratios v;/vi. Upper and lower bounds are shown as well as the
calculated asymptotic homogenization solution

the curves are not longer monotone. Non-intersecting curves are obtained as well over the range of
p2/p1 between 0 and oo the empty and rigid curves act as bounds again, the rigid curve does not
start at vf/v; = 1 for Vo = 0, and display a somewhat different behaviour as compared with the
rest of the curves.

The next example deals with the most fiber-weakened composite. The empty fiber one. The axial
and transverse dimensionless engineering properties, Young’s and shear moduli and Poisson’s ratio,
as a function of Vj, are shown in Figs. 4a, b, respectively. The dimensionless axial Poisson’s ratio is
constant over the whole interval and the dimensionless Young and shear moduli are monotone de-
creasing as displayed in Fig. 4a. Similar latter behaviour is followed by the dimensionless transverse
Young and shear moduli and Poisson’s ratio as can be seen in Fig. 4b.

The following example considers the normalized transverse shear modulus p*/p; as a function
of pa/p1. Figure 5a shows the case when 0 < p2/p1 < 1 and Fig. 5b that when uy/u; > 1 as the
continuous line. Both figures also display Bruno’s bounds taken from [2]. The computations were
carried for the percolation limit V5 = 7/4sin(n/3) as an extreme case. The asymptotic homogeniza-
tion solution lies between the bounds. For 0 < pg/p1 < 1, the bounds are very sharp as can be seen
in Fig. 5a. Not so for pa/p1 > 1 which tends to an almost constant value for large values of /.

Finally, the normalized transverse shear modulus p}/p; is plotted against the fiber volume frac-
tion (continuous line) in Fig. 6. The sharp bounds of Bruno are also shown. The computed value
lies between the bounds.
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Fig. 3. The dependence of normalized effective parameters as a function of the ratio uz/u1 = 0 (empty),
0.9, 20, 120 and oo (rigid) of plane a) bulk k;/K; and b) shear m;]/u, moduli; transverse c) Poisson’s ratio
v /v1 and d) Young’s E;/E; modulus. Note the bounding effect of empty and rigid fibers
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Fig. 4. Normalized effective property of empty fibers as a function of fiber volume fraction Vs of a) ax-
ial Young’s E;/E,, shear moduli p*/E; and Poisson’s ratio v} /v1; b) as (a) but for transverse properties:

E{/E1,m"/p and v{/1n
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Fig. 5. Comparison of the asymptotic homogenization calculation with Bruno’s bounds of the normalized
axial shear p"/u1 as a function of shear moduli ratio pa/pu1. a) 0 < pa/pu1 <1, b) pa/p1 > 1
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Fig. 6. Plot of the normalized effective axial shear modulus p* /u1 as a function of fiber volume fraction Va.
Also the sharper Bruno bounds are plotted. This case also applies to the dielectric constant and is used
for the calculations shown in Figs. 7 and 8

4.2. An application to nonlinear composites

This part is designed to show an application of above formulae for the effective properties to ob-
tain bounds of the effective properties of nonlinear fibrous composites. The variational procedure
described in [18], which incorporate microstructural information, is used here. This formulation
uses a comparison material [17] and allows the construction of bounds for the overall energy of any
composites whose material behavior is characterized by a convex potential function. Two examples
of bounds for a matrix-fibre composite will be illustrated in the context of nonlinear electrostatics
although these results also can be applied to nonlinear elastic composites as is demonstrated in
[19]. These examples are related with the problem of bounding the effective energy density of a di-
electric composite whose response is described by a convex potential function Wef Particularly,
a two-phase fibrous composite consisting of one isotropic linear phase, with energy function

it
Wi(E) = ze1| BJ?
and one isotropic nonlinear phase with energy function
1 1
W(B)=en | EP +371 B[4

where €7, ey and 7 are constants and E is the electric field.
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4.2.1. Exzample 1. A linear matriz containing nonlinear fibres

In this case, from the formula (3.8), page 3622, of [18], it is possible to obtain the following optimized
upper bound for the effective energy density

—Vv—eﬁ'—(:_E_) < p(oo) = (p(OO) i 1)2(F2 e 2F) + Vl[p(oo) = 1]4F4 . J | E |2, (16)
Wy, Vi (%—1) + p(oo) — 1 2[‘/1 <f€%_1> -I-p(oo)—l} €L

where F' is the real solution of

4 il Vi[p(co) — 12
() e

and E is the mean value of E. Here, p(co) is always an upper bound for the effective properties
p of the comparison material. In [18], the linear bounds of [2] were used for obtaining improved
bounds for nonlinear dielectric composites consisting of a periodic distribution of equal sized non-

overlapping spheres of one material in a matrix of the second material where the inclusion phase does
not percolate. In Figs. 7a, b, ¢, and d the normalized overall energy We /W, against fibre volume

sFP+F=1

a) 2 b) 2
log,(1{E|e, ) = 0 log,(1{E[%/e,) = 4
2.5 T T 10 v
-—- Voigt's bound
- - NUB &
— INUB ol
of -+ Reuss'bound 2 %
L " " " 0 " " e 2
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
c) log.(YE|%e, ) = 8 d) log, (IE|e, ) = 12
2 L P L

0 0.2 0.4 0.6 0.8

Fig. 7. Bounds for nonlinear fibers in a linear matrix. Plots of the normalized effective energy weft /Wy, as
a function of the fiber volume fraction V2. The nonlinear parameter variation log,(y|E|*/er) takes the values
0,4,8,12 in (a), (b), (¢), (d), respectively
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T2
fraction V; is plotted for different values of the parameter log, (7 |€E | ) (=0,4,8 and 12), which
L

characterizes the nonlinear effects, with ex/e;, = 2. The continuous line, Improved New Upper
Bound (INUB), shows the results of replacing formula (12b) by p(co) in Eq. (16), whereas the
dashed lines, New Upper Bounds (NUB), describes a similar situation, but replacing the linear
bounds of Bruno (see formulae (80) and (81) page 369 of [2]). In all these cases, both curves are
practically indistinguishables for values of V5 from 0 to about 0.6, but always, for higher values of
Va, a better behaviour can be observed for the INUB curves. Both curves always lies between the
classical bounds of Voigt (dash—dotted) and Reuss (dotted).

4.2.2. Example 2. A nonlinear matrixz containing linear fibres

In this case, by using formula (3.9), page 3622, of [18] the following lower bound for the effective
energy density can be derived

welt _ €o €L EN € ¥ v E |2
B>y, [ 22 Vi [ =2 =22 Ll 17
WL( )-ELP1(60>+ 2<5L oL / & (17)

a) V,=0.48 b) V,=0.78

-—- Voigt's bound
— INLB
— - NLB

- Reuss' bound

1 . 0
0 5 10 0 5 10
d) V,=0.90
20— _
A
I
1 5 I ,'
10} 4
5 L
0 <
0 5 10
log,(HE/e,) log,(HEI%/e,)

Fig. 8. Bounds for linear fibers in a nonlinear matrix for a square array (a), (b) and a hexagonal one (c),

(d). Plots of the normalized energy W°* /Wy, as a function of the nonlinear parameter as log,(y|E|?/eL). The

fiber volume fraction V> takes the values 0.48 and 0.78 in (a) and (b) respectively and 0.48 and 0.90 in (c)
and (d), in that order
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where ¢, is a free parameter. Any lower bound for the effective property p;(2), z = €L, /€, can be used
in (17) and the best bound follows by maximizing the right-hand side of (17) with respect to €,. In
v E I2)

€L
is plotted for differents values of V, and for ey /e = 2. Here the curves appearing in Figs. 8a
and 8b (for V3 = 0.48 and 0.78) were computed for two-phase fibrous composites with a cell of
periodicity of square type. The other Figs. 8 and 8d (for V3 = 0.48 and 0.90) shows curves which
corresponds to that of a hexagonal arrangement. As in Fig. 7 of Example 1, the dashed lines are
computed replacing p;(2) with the linear bounds of [2] in Eq. (17). The continuous lines in Figs. 8¢
and 8d are also obtained from Eq. (17), but replacing p;(z) by the formula (3.1d) of [15]. It can
be noted that in all cases the continulo_%_s,%ine is over the dashed line in almost all the interval
Y

€L
the percolation value V3 = 7/4 and V; = m/4sin(r/3) respectively, where the improvement of the

INLB curves respect to the NLB curves is remarkable. Other complementary results can be found
in [12].

Figs. 8a, b, c and d the normalized effective energy Weff /W, against the parameter log, (

of variation of the parameter log, . In Figs. 8b and 8d the comparison is shown near

4.2.3. An application to bone mechanics

Let us consider now an application of formulae (10)-(11) to determine effective moduli of the
osteonal cortical bone based on the simplifications given by [16]. In that paper, several convincent
reasons to model the mineralized tissue (bone matrix) as an effective elastic isotropic medium are
presented. Following this idea, we introduce for our calculations a set of estimate constants Ey,
of the bone matrix, which contain the averaged information of the collagen matrix reinforced by
hydroxyapatite crystals. Particularly, we take a Young’s modulus of E; = 21.45 GPa (see Sec. 3
in [16]), a Poisson’s ratio of 1, = 0.33 (see Table 3 in [4]) and the overall porosity of V3 = 0.09 [21].
After substituting these data into Eqs. (10)—(11), and taking into account that Ci1 = k+m,
Ci2 =k—m, C33 =n, Cy = p, C13 = I, we have the following values of the effective stiffnesses
Cn = 022 =234 GPa, 033 = 26.9 GPa, 044 = 055 =06.7 GPa, 012 = 10.7 GPa, and 013 = 023 =
11.3 GPa. These predictions agree with the experimental data of [9] in the range of 3% to 11%.

5. CONCLUDING REMARKS

A binary periodic composite is considered here, whose phases are elastic isotropic media. Exact
closed-form formulae are given for the overall properties and engineering constants. The periodic-
ity of the composite is hexagonal, so that the homogenized properties are transversely isotropic.
New formulae are also obtained for the limiting cases of empty and rigid fibers. The numerical
implementation of the formulae is relatively easy since it involves the computation of rapidly con-
vergent series. Infinite order matrices and vectors appear in the formulae, but they are truncated
to the second order in the calculations producing accurate enough results, because high powers of
R < 0.433(= cos(7/6)/2) appear in the components.

The results, obtained using the asymptotic homogenization method, are compared with the well-
known bounds of Hill [8], Hashin (see, for instance, [3] and [7]) and [2]. The computed results always
lie between the bounds. In certain cases the lower bound and the exact solution are very close to
each other in a larger part of the volume fraction interval. This fact and the simplicity of the formula
bound may be used in problems to improve bounds for a nonlinear dielectric composite as done in
[18]. It must be mentioned that the results shown in Figs. 4 and 5 are also applicable to the scalar
dielectric problem, in Figs. 6 and 7, because the formulae for the transverse shear modulus uncouples
from the rest of the parameters. The exact formulae (6), (10), (12) and the universal relations (8)
may be useful for checking numerical codes and experimental data.
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APPENDIX A

PARAMETERS THAT ENTER INTO EQUATIONS (7) AND (B1)—(B4)

A = (kixu — K2)Bi/ (K2 + xu),

=
= (1= x)/(1+ Rax),
=
=

=

Ci = (k1 — D)xu — (k2 — 1)] Bi/Fi,

Di K9 — 1)Bi/2F,;,
E;=B /(1 . ¢ )a
Bkad 4 (A1)
F;= VlXu = ("72 . 1)Gu
Gi=1/2+W/(k — 1),
Xu = 2/ p1,
K = (Kj+7pi/3)/(Kj + 1/3),5 = 1,2,
Xi =|l gl /(1 + p2).
APPENDIX B
THE COMPONENTS OF THE INFINITE ORDER VECTORS AND MATRICES
THAT APPEAR IN (7)
For t,s = 1,2,3, ... For the vector V,(vs), matrix M,(m;,) and vector \~7,,(vt),
U= R e i
m .
Mg = 061—1 6s-1 — XTR'®® Z R™'n64_1 6i+1 Toit+1 65-1, (B1)
i=1

Ut = Net+11,

where Kronecker’s delta &;, is defined as one, if ¢ = s and zero otherwise. The parameter y as well
as others like 4;, B;, C; that appear below are given in Appendix A.
Analogously, for Vp,(vs), My (mes) and Vp,(vt), the components are

vo =B g 5,5 ARPHp, 63+1]Ta
g O6t-3 6s—3 + AiR'**Crg;_3 6,3 BiR2*0gg 1 6441 (B2)
: BiR' g1 653 O6ts16s41 + AiR > g 6ot |
U = [Biget-31 AiTet+11]"
respectively; for the matrix My (mys),
Mis = Got—1 6s—1 + R>°"(AiTet—1 651 + Biget—165-1 + CiR2Ngt—1 171 65-1)- (B3)
Also
H; = Ajr11 + mk1B;/ sin (7/3). (B4)
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Certain rapidly convergent series related to doubly elliptic functions of periods w; = 1 and we =
¢'™/3_ which appear in (B1)—(B3), are given as follows:

Skru=) 'Ban’ for k+123,

mmn
Tk+l = Z/anﬂ;lﬁ_l_l for k+12>3,
mmn (B5)
Nkl = —Cllc+l_1sk+l’

/ l
Mkt = Crp1 T+l

where Bmn = mw; + nwy for m,n = 0,1,2,...; that the term m = n = 0 is excluded from the
summation is indicated by the prime on the sigma symbol and C} = k!/l!(k — I)! Note that S =
T> = 0 by definition.

As well

o0
2
Thl = E ° R*nkimit,
i=3

k+1+2
g =k (—H_—lRQnsz + 77;d> ;

(B6)

for k,l = 1,3,5,... The superindex o next to the summation symbol means that the sum is over
odd indices only. The double series Zk,l Tk, Zk’l gk, and Zk,l Nkinn are absolutely convergent. The
above series are quickly convergent.

APPENDIX C
LIMIT OF PARAMETERS A;, B;,C;, D;, E; AND x; AS (u2, K3) — (0,0)

If the material properties of the matrix, x; and K, and the volume fractions, V; and V3, are fixed,
then the parameters B;, C;, D;, E; and x; (see Appendix A) are functions of only one variable (u2
or K5) and their limits can be directly calculated by using known theorems of classical mathematics
analysis.

After previous algebraic transformations, taken from (Al)2 345 and (Al)jo, the following results
can be obtain

B; = 0¥ < Y -~ SN 5 (C1)
M1+ K1
[(I{l = I)Kg e 2/,&1]31‘ -—1
Ci= =2y 2
ViKs + 21, G; e G; (C2)
w1 B; J
D= —r—— —
Viks +2mC;  2G, (G3)
B;
BB oo rcreive il C4
"1 - pe/m (C4)
=/J41“N2__)1' (C5)

B1 + 2
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Under above conditions, the parameter A; is a function of two variables uo and K3 and can be
expressed as follows

Ky — 1 Ko — 2
i Kipg iy — 1 f8g — [ 42 o (C6)
2K + p1 Ko + 2p1 pg
As we can note, from (C6), the iterative limits lim lim A; = lim lim A; = —1 and, therefore, it
u—)O Ko—0 Ko—0 #2—70

is natural to intent to prove that
A — -1 (C7)
as (u2, K2) — (0,0). In fact, it is possible to verify that

(k1 + 1po Ko
w2 Ko + p1 Ko + 2p1 pio

= : (C8)

4 1l=

By substituting us = pcosf, Ko = psiné (p, 6 polar coordinates) into (C8), and by simplifying we
have

Ai (k1 4+ 1)pcosBsind

PES 1 -

B; ? ' p1(sin@ + cos @) + pcosfsin b =8l (C9)
as p — 0.

APPENDIX D
LIMIT OF PARAMETERS A;, B;, C; AND x; AS (u2, K32) — (00, 00)

As in Appendix C, for fixed values of x1, K1, V4 and V; the following limits can be derived by direct
evaluation

— 1
= M1 — K2 B oy (D1)
B1 + Kipe K1

-1)K;y — B, 1-
gt K Ll RAIEL o 1 Hd (D2)
ViKs 4+ 21u1G; k11
B ek . SO (D3)
p1 + 2
Whereas, as will be shown inmediately, for parameter A; results
A;— -1 (D4)

In fact, by introducing the polar coordinates g = pcos8, Ky = psinf into Eq. (C6), and after some
algebraic manipulations, we have

K11 8in @ + 2k cos + py sin€ + 2u; cos

Bik1 — Ai| = | By -
|Biky — Ai| = |Bi| pcosfsinf + py sin@ + 247 cos @

and, consequently |B;k; — A;| — 0 as p — oo.
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APPENDIX E
DERIVATION OF FORMULAE (12). RIGID FIBERS

a) Derivation of (12);

In order to solve the indeterminate forms involved in the calculation of the limit of K as
(2, K2) — (00, 00), we may write (6); as follows

K= (Ki+m/3)V1 +ai+Bi (E1)
where
ViVs D
o = (Ka + pa/3)Va — L—f(m + /3= Ky — pa/3)*,
. (E2)
Vo(l + & i D
i = %ngk Vp(Ky + /3 — Ko — p1a/3)° 5
1

The functions ; and B; have VX finite limit as (ug, K3) — (00, 00). In fact, by substituting (A1)s
and (Al)sz into Egs. (E2), and simplifying, we get

2VR[Gi + (K + 1 /3)) (K2 + pi2/3) — 12 (Ky + p/3)?

. - Vi(Kz + p12/3) + 2G;
i (K2 + p2/3) +2Gi (E3)
Bi = V(1 + k1) VEML Ve (K7 + p1/3 — Ko — p2/3)? Bim
' [Vi(K2 + p2/3) + 2mGi]?
From equations (E3), as (ug2, K2) — (00, 00), results
2V;
o — “?2 (Gipa + (K1 + pa/3)Vi]
= (E4)
Vo(1 + 51)#1VPTMI_(1V;,
ﬁ’i S V2
1M1
By combining (E4) and (E1), the rigid effective coefficient K} takes the form
: 2V Va(1 + 51) i VIMEV
K7 = (Ka+ i /3)Vi+ 32 [Gupn + (Ko 4+ /3)VA] + : 1\),2”1” e (E5)
1

Finally, form (E5), collecting the term Kj + u1/3, using V; + Vo = 1, and by transforming conve-
niently, the formulae (12); and (13); can be obtained.
b) Derivation of (12),

From (6)4 and (7)2, using (Al)j9, we have
pi =m(l1-2V2 x; P) (E6)
where

1
Ll xVe - XBVIMGY,

(E7)

Taking limit as g9 — oo on both sides of (E6) and (E7), and using (D3), the effective formulae
(13)2 and (13)2 can be derived.
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c) Derivation of (12)3
From (6)5 and (7)3 we have

mi = 1 — Va(p1 — p2)(1 + K1) Ei/ (1 + R2H; — VI, M 1V,). (E8)
By substituting (A1)s into (E6), and by using (A1)g we can obtain

Va(1+ k1) B;
(1+ R2H — VI M;'V,)

m* = p +

Taking into account (C1)-(C4) and (C7), evaluating in (E9) the limit as (ug, K3) — (00, 00),
collecting y1, and using (13)3, one can get (12)3.
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