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The paper is devoted to the application of the evolutionary algorithms, gradient methods and artificial
neural networks to identification problems in mechanical structures. The special intelligent computing
technique (ICT) of global optimization is proposed. The ICT is based on the two-stage strategy. In the
first stage the evolutionary algorithm is used as the global optimization method. In the second stage the
special local method which combines the gradient method and the artificial neural network is applied.
The presented technique has many advantages: (i) it can be applied to problems in which the sensitivity
is very hard to compute, (ii) it allows shortening the computing time. The key problem of the presented
approach is the application of the artificial neural network to compute the sensitivity analysis. Several
numerical tests and examples are presented.

1. INTRODUCTION

The identification problems belong to inverse problems and concern the determination of mechanical
systems by finding same material, shape and topology parameters and boundary conditions from
the knowledge of the responses to given excitations. Such problems are mathematically illposed.
At present, the main challenges in solving such problems consist in elaborating new computational
methods, experimental techniques, regularization techniques and the formulation of new objective
funtionals [2]. An identification problem can be formulated as the minimization of some objective
functionals (fitness functions) which depend on measured and computed state fields such as dis-
placements, strains, eigenfrequencies or temperature. In order to obtain the unique solution of the
identification problem one should find the global minimum of the objective functional. One of the
global methods of optimization is the evolutionary algorithm [1, 13]. Evolutionary algorithms have
been applied successfully to solve many identification problems [4-6]. The main disadvantage of this
approach is very long computing time. In order to speed up this approach the hybrid evolutionary
algorithm was proposed (7, 8] in which a special kind of gradient mutation was applied. It was based
on the sensitivity of the objective functional. The gradient of the functional was computed by means
of sensitivity analysis [11] or the finite difference method. The frequency of the gradient mutation
was controlled by the artificial neural network.

In this paper a new intelligent computing technique based on the two-stage strategy is proposed.
In the first stage the evolutionary algorithm is applied. The second stage is based on the gradient
method in which the sensitivity analysis of the objective functional is performed by neuro-computing.

The problem of applications of ANN to the sensitivity analysis was considered in [12, 15]. In
the paper [12] the sensitivity analysis as the method of the analysis of the effects of the ANN is
described. The paper [15] is devoted to the sensitivity analysis, which defines a robust model of the
neural network.

In the present paper the ANN is used as the computation tool of the sensitivity analysis. The
method of local optimization, which uses the ANN to determinate the sensitivity analysis is shown.
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This approach is more general than the methods described earlier, and is applied to an identification
problem of mechanical structures.

The paper consists of 9 sections. In Sec. 2 the evolutionary algorithms are described. In Sec. 3
the idea of neural computing in the sensitivity analysis and the examination of this approach is
presented. Section 4 is devoted to the local optimization method, which uses the neuro-computation
of the sensitivity analysis. In Sec. 5 the intelligent computing technique is presented. Section 6 is
devoted to the examination of the ICT for the minimization of a simple benchmark function. In
Secs. 7 and 8 the applications of the ICT for the identification problems of 2-D and 3-D elastic
structures were included respectively. In Sec. 9 general conclusions are presented.

2. EVOLUTIONARY ALGORITHMS

The evolutionary algorithms (Fig. 1) are one of the methods of artificial intelligent, and can be
considered as a method of global optimization.

Evolutionary Algorithm
/ Initiation o
Environment
Reproductions
Succesion
Evaluation :
Operations

Fig. 1. The diagram of the EA

The evolutionary algorithms work on a population of pop _size individuals, called chromosomes,
which consist of genes [1]. Genes play the role of the design variables. In the paper the case of
the real-coded chromosome is used. The others methods of coding the chromosome are known: the
binary coding, the Gray coding, etc.

At the begining the chromosomes are randomly generated in a space of solution (initation).
Next, the EA works iteratively. In each iteration (generation) the chromosomes are modified by
means of evolutionary operators: Gaussian mutation and arithmetical crossover. Many others kinds
of mutation: uniform, non-uniform, boundary, etc. and kinds of crossover: simple, heuristic etc.
are known. The mutation changes some values of randomly selected genes of the chromosome. The
crossover creates children on the basis of two randomly selected parents. The frequency of working of
the operators depends on the parameters, which describe the probability of the mutation pro mut
and the crossover pro_cro. The next step is the evaluation of the objective function for each
chromosome (evaluation). The objective function plays the role of the environment to distinguish
between good and bad solutions. The last step in each generation is the selection (succesion and
reproduction). In this work the tournament selection was used. Many others types of selection:
roulette-whell, rang, etc. are known. All steps are repeated until the stop condition is fulfilled. In
many cases the stop condition is imposed to the number of generations.

In many works the best chromosome is considered as a final solution of the evolutionary algorithm.

In the ICT a set of chromosomes is taken into account as the result of the first stage. There is a
great probability that this set is close to the global optimum. Therefore, in the second part of the
ICT the global optimum is found with great accuracy.
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3. SENSITIVITY ANALYSIS BY NEURAL COMPUTING

The approximation problem is one of the well known applications of the ANN [10]. Consider the
ANN shown in Fig. 2. The neurons i; = 1..I; create j-th layer, where j = 0..J is the number of
the layers. Additionally, consider s;; as the sum of signals in the i-th neuron in j-th layer, ei;j are
the output values of 4-th neurons in j-th layer. The output value of the neuron with the sigmoid
activation function is expressed as:

1
ek = f(Sik) = ———— 1
ik = flsi) = 0=, (1)
where:
Sik = €i—11Wi—11ik T €i—12Wi—12ik + - - - + €11, Wi—11,_,ik + WWik
I
=) ei 1nWi—tnik + WWik (2)
n=1

e — output values from previous layer, w — weight.
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Fig. 2. The diagram of the ANN

Computing the sensitivity of the sigmoid active function is very easy. The sensitivity of the
output signal e;; with respect to some input value e, can be expressed as follows:

d€J1 I dslnl : delnl . Iz d52n2 : dean : Z (3)
deo, deg, d31n1 delng d32n2 g

ni=1 na=1

The fitness function close to the optimum is approximated by a parabolic function, therefore
only one hidden layer in the ANN is sufficient.

The formula (3) can be reduced to the equation:

I 12
dezy dsin, dein, dson, degy,
deo, deg, dslm 51 delnz d32n2

=1
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if the n; # ngy the second component is equal to 0. It allows disregarding the second sum and
simplification previous formula to:

I
degr _ Z (dslm _dein, dson, _dem), (5)
=1

deg, deo, d31n1 deln1 d52n1

where:
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Substituting formulas (6)—(8) and (9) to formula (5) gives the following expression:
n = 5
deoy ey iny e
- Bty = ey e s e b (10)
or:
I 5 =
deor = 2\t e ) (1+emom)

In the case of more hidden layers the formula (11) can be easy developed. For example, for 2
hidden layers one obtains:

I I3 2 =
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However, in this work it will not be used.
In order to examine above formulas, consider the following function:

f= () = Xn: (%m —0.7"/3 <g — cos (27rm|xi - 0.7|"/3))>, (13)

i=1
where: n is a number of variables, m defines the number of local optimas by each variable.

In the test n is equal to 2 and the parameter m equals 1. This function is relatively simple,
differentiable and has one optimum (global). A more complicated function is not necessary to verify
the gradient computation using ANN, because above formulas are used in the algorithm of local
optimization method.

The global optimization and its verification for more complicated, multimodal functions will be
described in the following sections.

The aim of this test is the comparison of the actual sensitivity of the function in selected points
with the sensitivity computed by means of the ANN. The ANN with 11 neurons (2-8-1) is used.
The ANN for 18 randomly generated (in domain) training vectors is learned. For another set of the
vectors the comparison can give similar results. In the Table 1 the values of sensitivities selected
from 100 randomly generated points are shown.

The verification of neural sensitivity analysis for other functions (with one optimum also) has
been carried out. The results are similar.
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Table 1. The results of the verification of the sensitivity of the ANN

result | 0f/0x1 | Of/0z,

min error 0.01% 0.02%
max error 8.32% 7.85%
average error 2.87% 3.02%

Fig. 3. The diagram of the ANN used in this test

4. THE LOCAL MINIMIZATION METHOD

The proposed local minimization method is a combination of the classical gradient method (the
steepest descent method) [14] and the ANN. In the first step of the method a set (cloud) of points
in a function domain is generated. It is generated by evolutionary computing. To perform the
optimization process, the ANN is constructed. The ANN has only one hidden layer, which was
explained previously. The number of the neurons in the input layer is equal to the number of design
variables of the minimizing function. The number of neurons in the hidden layer is equal to the
number of the design variables of the minimizing function multiplied by 2. In the output layer there
is only one neuron (which plays the role of the approximation of the fitness function). The starting
number of training vectors is equal to 3 powered by the number of design variables of the minimizing
function (simple mathematical dependence).

In each iteration of the optimization method a few steps are performed (Fig. 4). In the first step
a set of training vectors of the ANN is created. In the first iteration the set is created on the basis
of the cloud of points. The coordinates of the points play the role of the input values of the ANN,
the fitness values in the points play the role of output value of the ANN. Both values (input and
output) are transformed to the range [0; 1], which is necessary in the case of the sigmoid activation
function of neurons. In the second step the ANN is trained. In the next, third step, the optimization
process is carried out. The fitness function approximation is performed by the ANN. The steepest
descent method of optimization is used. To compute the gradient the formula (11) is employed.
The fitness function is computed by means of the ANN. For the point, which is the result of the
optimization (found in step 3), the actual fitness function is computed. In the last step the stop
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condition is checked. If the condition is true, the point is treated as the result of the optimization
process. If the condition is false, this point is added to the training vector set and the next iteration
is carried out (go to step 1).

Cloud of points

Building the ANN
Creating
the learning vectors CZ—

Learning the ANN

1

Loca optimization

!

Verification the optimum

Fig. 4. The flow chart of the local optimization method

The optimization time depends on the number of fitness function computation. There are pa-
rameters of algorithm, which strongly influence the optimization time. It is readily noticeable that
the most important parameters are: the number of training vectors (in the first iteration), the RMS
error of the ANN (learning error) and the maximum number of iterations. The aim of the tests is
to choose the best values of these parameters, for which the computation time takes the minimum.

The local optimization method for different values of the discussed parameter was carry out. The
test of the minimization was performed for the fitness function (13) (n = 2, m = 1). The design
variables x7 and z can take the values from the range [0;1]. The actual minimum of the fitness
function is equal to [0.7;0.7], the fitness value in the optimum is equal to 0. The stop condition for
the algorithm concerns the finding point. If both design variables z; and z3 belong to the range
[0.68;0.72], the optimization process is stopped.

The number of training vectors takes the values: 6; 12; 15; 18 and 21. The RMS error takes the
values: 0.01; 0.02; 0.03 and 0.04. The maximum number of iterations takes the values: 100, 200 and
300. All combinations (60) of the parameters were checked.

For each combination 100 tests were applied, and then, the results (the number of fitness function
computation) were averaged.

The mean results obtained in the tests are shown in the Table 2.

The optimal parameters are: the number of training vectors is equal to 18, the RMS error take
the value: 0.01 and the maximum number of iterations is equal to 100.

In the next tests the optimal parameters were used.

The optimal number of training vectors are relatively low. The ANN works as the local approx-
imation tool, and the ANN should map the function in the relatively small environment (region of
the local optimum). The ANN does not have to map the function in whole domain.



An intelligent computing technique in identification problems 357

Table 2. The results of testing (parameters: the number of training vectors, the RMS-error, the maximum
number of iterations, results: the number of fitness function computation)

No | parameters | results | No | parameters | results | No | parameters | results
1| 6-0.01-100 | 75.22 | 21 | 12-0.03-300 | 287.12 | 41 | 18-0.02-200 | 51.36
2| 6-0.01-200 | 98.95 | 22 | 12-0.04-100 | 105.24 | 42 | 18-0.02-300 | 55.33
3| 6-0.01-300 | 148.33 | 23 | 12-0.04-200 | 220.42 | 43 | 18-0.03-100 | 97.72
4 | 6-0.02-100 | 108.22 | 24 | 12-0.04-300 | 334.78 | 44 | 18-0.03-200 | 175.12
5 | 6-0.02-200 | 141.07 | 25 | 15-0.01-100 | 41.95 | 45 | 18-0.03-300 | 218.01
6 | 6-0.02-300 | 174.47 | 26 | 15-0.01-200 | 58.00 | 46 | 18-0.04-100 | 102.96
7| 6-0.03-100 | 98.26 | 27 | 15-0.01-300 | 45.68 | 47 | 18-0.04-200 | 209.55
8| 6-0.03-200 | 193.84 | 28 | 15-0.02-100 | 42.39 | 48 | 18-0.04-300 | 314.87
9| 6-0.03-300 | 311.06 | 29 | 15-0.02-200 | 54.32 | 49 | 21-0.01-100 | 120.28

10 | 6-0.04-100 | 127.53 | 30 | 15-0.02-300 | 58.33 | 50 | 21-0.01-200 | 41.49
11 | 6-0.04-200 | 254.99 | 31 | 15-0.03-100 | 135.09 | 51 | 21-0.01-300 | 39.44
12 | 6-0.04-300 | 376.32 | 32 | 15-0.03-200 | 195.47 | 52 | 21-0.02-100 | 60.85
13 | 12-0.01-100 | 51.11 | 33 | 15-0.03-300 | 274.21 | 53 | 21-0.02-200 | 60.26
14 | 12-0.01-200 | 64.83 | 34 | 15-0.04-100 | 112.27 | 54 | 21-0.02-300 | 58.07
15 | 12-0.01-300 | 66.24 | 35 | 15-0.04-200 | 200.44 | 55 | 21-0.03-100 | 113.04
16 | 12-0.02-100 | 37.71 | 36 | 15-0.04-300 | 312.88 | 56 | 21-0.03-200 | 174.70
17 | 12-0.02-200 | 52.33 | 37 | 18-0.01-100 | 34.14 | 57 | 21-0.03-300 | 283.92
18 | 12-0.02-300 | 77.63 | 38 | 18-0.01-200 | 41.54 | 58 | 21-0.04-100 | 112.62
19 | 12-0.03-100 | 89.66 | 39 | 18-0.01-300 | 42.66 | 59 | 21-0.04-200 | 219.66
20 | 12-0.03-200 | 171.07 | 40 | 18-0.02-100 | 47.90 | 60 | 21-0.04-300 | 332.35

In the first iterations the ANN gives results that are not very equal. The results are more equal
in the next iterations due to the addition of the point (to the training vectors), which is the result of
the local optimization. The introduction of more randomly generated vectors to the training vectors,
gives worse results than previously shown approach.

5. THE INTELLIGENT COMPUTING TECHNIQUE (ICT)

The main idea of the creating the intelligent computing technique (ICT) (Fig. 5) as the two-stages
strategy is the coupling of the advantages of evolutionary and gradient optimization methods aided
by neuro-computing. The evolutionary algorithms can find the global optimum, but it is very time
consuming. The gradient methods can find the optimum precisely, but they need information about
sensitivity of the objective function.

The ICT (in first stage) uses some properties of the evolutionary algorithms (EA). Those algo-
rithms are procedures to search the optimum in the feasible space of solutions. The EA generates
clusters of points. The clusters are positioned closely to the optimum. There is a great possibility
that the optimum is the global optimum.

There is a risk that the points are located close to more than one optimum. In this case the
second stage (local method) can work unstably. It can be solved in a few ways.

One of the possibilities is to introduce the parameter which describes the maximum size of the
cluster. The parameter can be expressed by the radius of the region in domain. The center of the
region is equal to the best solution of the EA. All points which are inside the region, belong to the
cloud of points. This approach is characterized by a variable number of training vectors. In this case
an alternative parameter is introduced. The parameter defines the maximum number of the points
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Fig. 5. The diagram of the intelligent computational technique (ICT)

in the cloud. In the case where the EA has generated fewer points inside the region it is necessary
to generate additional ones randomly.

In the second stage of the ICT several best points in this region are selected. Then, these points
play the role of the cloud and as previously shown, the local method is beginning. This method is
based on the gradient method, but the sensitivity analysis is evaluated by the neuro-computing.
Therefore, the ICT combines advantages of previous described methods, and avoids the disadvan-
tages.

The crucial problem is the moment of the transition from the first stage to the second one. Some
experience allows taking parameters of the ICT, for which the ICT can find the optimum earlier
than the EA, which is used separately (see Secs. 6, 7 and 8).

In the general case the moment of transition can depend on some parameters of the first stage:
(i) — the changes of fitness function of the best chromosome, (ii) — the size of the clusters of
chromosomes, (iii) — the diversification of the population and many others.

6. THE EXAMINATION OF INTELLIGENT COMPUTING TECHNIQUE (ICT)

The aim of the test is to find the minimum of the multimodal function (13) (m = 3, n = 2). The
design variables can take the values from the range [0; 1]. The actual minimum of the fitness function
is equal to [0.7;0.7], the fitness function value in the optimum equals 0.

If both design variables z; and x5 belong to range [0.68; 0.72], the optimization process is stopped.
The minimization process for two cases is carried out. The introduction of two cases allows assessing
the proposed method and the comparison to another known method — the EA. In the first case only
the EA is applied. The parameters of the EA are as follows: the probability of the mutation:
pro_mut = 0.2, the probability of the crossover: pro_cro = 0.2, population size: pop _size = 7 (the
parameters are optimized by the minimal number of fitness function computations of the EA). The
number of fitness function computation is equal to 251 (the mean value from 1000 experiments).
In the second case the two-stage global method is applied. In the first stage the EA is used. The
parameters of the EA are the same as in the first case. The number of generations is equal to 30.
The number of fitness function computations equals 95 (the mean value from 1000 experiments).

The number of generations of the EA (first stage) depends on the number of fitness function
computations in the case, in which the EA is used only. In the case of the EA working separately
(as the optimization method), the optimum was found in 251 fitness function computation. In case
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of the EA working as the method of preparation the cloud, the time will be shorten, therefore the
30 number of generations were assumed.

If the EA is used to generate the cloud of points only, its working time equals 40% of working
time in the case, when the EA is used as the optimization method.

In the second stage the best 9 points (the best one and 8 closest points) in domain as the points
of the cloud are selected. The ANN with 11 neurons (2-8-1) is used (Fig. 3).

The results obtained in the next iterations of the second stage are shown in Table 3.

Table 3. The solutions obtained in next steps of the minimization process

No. “ Y fitness function
1] 0.521 | 0.850 0.241
2| 0.504 | 0.793 0.188
3 (0.539 | 0.733 0.124
4 | 0.587 | 0.739 0.070
5| 0.633 | 0.740 0.030
6 | 0.678 | 0.697 0.004
7 1 0.692 | 0.665 0.008
8 | 0.660 | 0.673 0.013
91| 0.629 | 0.722 0.028

10 | 0.616 | 0.727 0.038
11 | 0.602 | 0.732 0.053
12 | 0.594 | 0.695 0.055
13 | 0.612 | 0.715 0.039
14 | 0.600 | 0.687 0.050
15 | 0.626 | 0.715 0.028
16 | 0.606 | 0.696 0.043
17 | 0.638 | 0.668 0.024
18 | 0.667 | 0.649 0.019
19 | 0.664 | 0.676 0.011
20 | 0.666 | 0.686 0.009
21 | 0.673 | 0.710 0.006
22 | 0.693 | 0.721 0.004
23 | 0.687 | 0.731 0.008
24 | 0.687 | 0.727 0.007
25 | 0.679 | 0.736 0.011
26 | 0.681 | 0.731 0.009
27 1 0.682 | 0.723 0.007
28 | 0.679 | 0.705 0.004
291 0.678 | 0.700 0.004
30 | 0.680 | 0.706 0.004
31 | 0.703 | 0.695 0.001

In Table 3 the results from only one experiment are presented, but the results from other exper-
iments are very similar.

The application of the ICT allows decreasing the number of fitness function computation. In the
case of using the EA, the number of fitness function computations was equal to 251. In the case of
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Fig. 6. The graphical representation of Table 3
using the ICT the number of fitness function computation equals 126 (95 + 31). In this case, the
computational time was shortened by 49%.
7. IDENTIFICATION OF A CIRCULAR DEFECT IN 2-D STRUCTURE USING ICT

Consider a two-dimensional elastic body (plane strains) with a circular hole (Fig. 7).

FEEET T q(t)

Xy \

sensor
points

Fig. 7. The plate with the circular defect

The body (1 cm x 1 cm) is loaded dynamically by a traction field q(t) = ¢H(t), where ¢ = 100 kN,
H(t) - Heaveside function. The coordinates x, y and the radius r of the hole are unknown. The
aim of the test is the identification of the parameters of the hole through the minimization of the
objective functional:

f=i /P /T (lU(z,t)~ﬁ(5,t)’)25(z—x")dtdl“ (14)

where: u and @ ~ measured and computed displacements in boundary sensor points x respectively,
n — the number of sensor points, § — Dirac function, I" - the boundary of the structure, T' = [0,t] -
the time of the analysis, ¢; — terminal time.

Displacements @ were computed by the boundary element method (BEM) [3]. The actual pa-
rameters of the hole are: 2 = 0.3, y = 0.6 and r = 0.1. If the design variable belongs to range
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[0.28;0.32], y belongs to range [0.58;0.62] and r belongs to range [0.08;0.12], the optimization pro-
cess is stopped. As in the previous test, the minimization process for two cases is carried out. The
introduction of two cases allows assessing the proposed method and the comparison to another
known method — the EA, too. In the first case only the EA is applied. The parameters of the EA
are as follows: the probability of the mutation: pro_mut = 0.2, the probability of the crossover:
pro_cro = 0.2, population size: pop size = 15 (the parameters are optimized by the minimal
number of fitness function computations of the EA). The number of fitness function computation
is equal to 213 (the mean value from 25 experiments). In the second case the ICT is applied. In the
first stage the EA is used. The parameters of the EA are the same as in the first case. The number
of generations is equal to 15. The number of fitness function computations equals 122 (the mean
value from 25 experiments).

If the EA is used to generate the cloud of points only, its working time equals 60% of working
time in the case, when the EA is used as the optimization method.

In the second stage the best 27 points (the best one and 26 closest points) in the domain as the
points of the cloud are selected. The ANN with 10 neurons (3-6-1) is used.

The results obtained in the next iterations of the second stages are shown in the Table 4. In
Table 4 the results from only one experiment are presented, but the results from other experiments
are very similar.

Table 4. The solutions obtained in the next steps of the minimization process

No. | z [em| | y [em] | r [em] | fitnessfunction
1| 0.537 | 0.565 | 0.229 18.733
2| 0.300 | 0.697 | 0.122 3.102
3| 0.560 | 0.750 | 0.130 2.056
4] 0453 | 0.760 | 0.098 1.295
5| 0.354 | 0.606 | 0.233 25.165
6] 0345 | 0.340 | 0.220 20.147
71 0.822 | 0.345 | 0.086 3.472
81 0232 | 0.765 | 0.123 5.185
9 0.286 | 0.500 | 0.092 0.909

10 | 0.582 | 0.483 | 0.139 2.077
11 | 0.371 | 0.557 | 0.132 2.674
12 | 0.439 | 0.558 | 0.123 1.532
13 | 0.419 | 0.558 | 0.116 1.060
14 | 0.305 | 0.541 | 0.111 0.816
15| 0.285 | 0.643 | 0.110 1.132
16 | 0.315 | 0.561 | 0.106 0.400
17 | 0.347 | 0.608 | 0.105 0.430
18 | 0.309 | 0.674 | 0.103 0.773
19 | 0.284 | 0.532 | 0.102 0.351
20| 0.324 | 0.591 | 0.102 0.125
21| 0.304 | 0.594 | 0.101 0.074

The application of the ICT allows decreasing the number of fitness function computations. In
the case of using the EA, the number of fitness function computation was equal to 213. In the case
of using the ICT the number of fitness function computation was equal to 133. In this case, the
computational time was shortened by 38%.
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8. IDENTIFICATION OF A SPHERICAL DEFECT IN 3-D STRUCTURE USING ICT

Consider a three-dimensional elastic body with a spherical hole (Fig. 8).

\ 4

N

Fig. 8. The solid structure with the spherical defect

The body (2 cm x 2 cm X 2 cm) is loaded by traction field ¢ = 100 kN. The coordinates z, y, z
and the radius r of the hole are unknown. The aim of the test is the identification of the parameters
of the hole through the minimization the objective functional:

. ) : ;
f=;A('U(z,t)-u(x,t)‘) 5(5—5)&1 (15)

where: u and @ — measured and computed displacements in boundary sensor points x* respectively,
n — the number of sensor points, § — Dirac function, I" — the boundary of the structure.

Displacements @ were computed by the finite element method (FEM) [11].

The actual parameters of the hole are: z = 0.0, y = 0.0, z = 0.0 and r = 0.05. The stop condition
for the algorithm concerns the best finding point. If design variables x, y and z belong to range
[—0.02;0.02] and r belongs to range [0.04;0.06], the optimization process is stopped. Like in the
previous test the minimization process for two cases is carried out. In the first case (only the EA) the
number of fitness function computation was equal to 424. In the second case (two stages strategy)
the number of fitness function computation was equal to 262 (240 + 22).

If the EA is used to generate the cloud of points only, its working time equals 60% of working
time in the case, when the EA is used as the optimization method.
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The results obtained in the next iterations of the second stages are shown in the Table 5.

Table 5. The solutions obtained in next steps of the minimization process

No. | z[em] | y[em] | z[cm] | 7 [cm] | fitnessfunction
1 0.917 | —0.859 | —0.224 0.872 678.375
2| —0.348 0.826 0.766 | —0.255 459.342
3 0.797 0.658 | —0.282 | —0.665 180.966
4 0.308 | —0.528 | —0.015 0.109 330.086
) 0.490 | —0.408 | —0.084 0.230 342.055
6 0.324 | —0.146 0.019 0.431 183.236
7| —0.187 | —0.178 0.036 0.364 51.921
8 | —0.335 0.014 | —0.163 | —0.137 144.331
9| —0.046 | —0.176 | —0.117 0.246 59.003

10 0.160 0.081 | —0.009 | —0.070 46.073
Il 0.005 0.054 | —0.098 | —0.132 22.476
12 | —0.098 | —0.142 | —0.120 0.092 39.734
13 0.122 0.033 | —0.144 | —0.048 40.022
14 | —0.045 | —0.113 0.060 | —0.011 62.204
15 | —0.121 0.042 0.033 | —0.042 61.173
16 | —0.075 0.000 | —0.055 0.107 30.029
17 0.063 0.020 | —0.035 | —0.043 2207
18 | —0.017 0.071 | —0.074 | —0.009 32.943
19 0.026 | —0.045 | —0.034 | —0.003 27.299
20 | —0.005 | —0.051 0.008 0.008 19.156
21 | —0.025 0.010 0.020 | —0.009 13.092
22 0.006 | —0.004 | —0.020 | —0.049 8.052

The application of the ICT allows decreasing the number of fitness function computations from
424 to 262. In this case, the computational time was shortened by 38% (like in previous section).

9. CONCLUSIONS

In the paper a new approach of global optimization method, named the intelligent computational
technique (ICT) has been presented. The ICT combines classical techniques with the methods of
artificial intelligence. The ICT is based on the two-stage strategy. In the first stage the evolutionary
algorithm is used as the global optimization method. In the second stage the special local method
which combines the gradient method and the artificial neural network is applied. Due to finding
the optimal parameters of the second stage of the ICT, the computation time of whole ICT is
minimized.

Several numerical tests and examples have been presented. The ICT gives better results than
when the EA is used alone. The computational time is decreased even to 49%. In the cases, in which
the time of computing of the fitness function is meaningful (the BEM or the FEM analysis) this
method is particularly useful.

The crucial problem of the ICT is the moment of transition from the first stage to the second
one. This problem will be examined in details in next works.
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