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Example of learning Bayesian networks from simulation data
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Bayesian belief networks represent and process probabilistic knowledge. This representation rigorously
describes the knowledge of some domains and it is a human easy-use qualitative structure that facilitates
communication between a user and a system incorporating the probabilistic model. Learning Bayesian
network from data may be grouped into two modelling situations: qualitative learning and quantitative
learning. The first one consists in establishing the structure of the network, whereas the second concerns
determining parameters of the network (conditional probabilities). Both modelling methods were applied
on exemplary data to show the possibilities and benefits of this methods. The results and conclusions are
presented. It was necessary to preprocess the date first. The used method, described in detail in the paper,
consists in discretization into linguistic states on the basis of evaluated signal derivative. Some remarks
about adjusting the network, as a part of model identification, are also presented.
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1. INTRODUCTION

Bayesian belief networks represent and process probabilistic knowledge. Their are composed of two
major elements. The first one is concerned with graph, which is represented by nodes and links
between them. This element is qualitative domain of the model. The.probability distributions in the
form of conditional probability tables (CPT) as a part of the quantitative domain of the model are
attached to the nodes of the graph. This representation rigorously describes the knowledge of some
domains and it is a human easy-use qualitative structure that facilitates communication between a
user and a system incorporating the probabilistic model. These advantages cause that the Bayesian
networks has become a popular representation for encoding uncertain expert knowledge in expert
systems and they are used frequently in real world applications, including technical diagnosing
[8], medical diagnosing [2], financial forecasting [1] and manufacturing control [19]. Bayesian belief
networks have been very recently applied to diagnostics of hypothetical accidents in nuclear power
plants [11].

The Bayesian network identification task can be divided into two parts according to the above
mentioned elements: determination of the structure and determination of the conditional probability
tables. The second one is the most important and may be realized by obtaining from different sources
such as:

e results of analysis using physical or numerical models (e.g. results of Probabilistic Safety Analysis
for nuclear reactors),

e results of experiments or passive observations,

e opinions of domain experts.
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The expert opinion is often the only source of information on the discussed probability. It should
be stressed that the quality of such data is unknown and validation of the complex Bayesian net-
works making use of such data is very difficult or even impossible [6]. Alternative method of model
identification, which is described in this paper, is learning Bayesian Network from data. The investi-
gations were conducted on an examplary data, which was taken from simulation of nuclear reactors
accidents [5].

There is also briefly described a methodology of sensitivity analysis, which can be useful in
tunning the network parameters obtained in learning process.

1.1. Bayesian networks

Bayesian networks is a directed acyclic graph (DAG) and is always represented visually with a set of
nodes and a set of links (Fig. 1). Each node represents a specific variable (e.g. temperature, state of
a patient, feature of some object etc.), which must have a finite number of mutually exclusive states
(e.g. yes, no, high, low, medium increasing or decreasing etc). Each link represents a relationship
between variables, and is depicted with an arrow. Practically, the Bayesian network is typically
constructed using notions of cause and effect relation, where conditional probabilities represent the
degree of belief in those relation. In most cases, this procedure is acceptable.
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Fig. 1. An example of Bayesian network [9] a) before inference, b) after inference

The representation consists also of a set of local conditional probability distributions combined
with a set of assertion of a conditional independence that allow us to construct the global joint distri-
bution from the local distributions. The decomposition is based on the chain rule of the probability
Eq. (1). The formal definition is presented below.

P(xy,...,z,) = HP(zi|pa(x¢)) (1)

where pa(z;) is the parent set of ;.

Definition [14]. A Bayesian network consist of the following:
e A set of variables and a set of directed arcs between variables.
e FEach variable has a finite set of mutually exclusive states.

e The variables together with the directed arcs form a directed acyclic graph (DAG). (A directed
graph is acyclic if there is no directed path A} — ... — Ap,and A; = A,,).
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e To each variable A with parents By, ..., By, there is attached the potential table P(A|Bz, ..., By).

Bayesian networks are used to perform inference about unknown events (by calculating
a'posteriori probabilities) on the basis of the achieved information (for instance in the Fig. 1b
P(dog — out = false) = 0.834 in case of hear — bark = false).

2. IDENTIFICATION OF BAYESIAN NETWORK-BASED MODELS
2.1. Structure

The first thing to take into consideration during the identification of Bayesian Network-based models
is that its purpose is to give estimates of the certainties (probabilities) for events that are not known
(observable or only observable at an unacceptable cost) [13]. Therefore, the first task in the model
identification is to recognize these events. They are called hypothesis events. The identified events are
then grouped into the sets of mutually exclusive events to form hypothesis variables. The next step is
to identify the types of achievable information that may introduce something about the hypothesis
variables. These types of information are grouped into information variables in accordance with
the rule that the one variable contains only mutually exclusive states. Then, a typical piece of
information is a statement that a certain variable is in a particular state, but softer statement are
allowed too [14]. Sometimes there is a need to introduce some variables, which are not either the
hypothesis variable or the information variable. Such variables are called hidden variables and they
are used to maintain the conditional independence or make the model identification process easer
(modelling tricks).

Having identified the variables for the model, the next thing will be to establish the relations
between variables as a links and their directions. In most cases the directed links represents the
causality but it is not a rule, because sometimes causal relation is not obvious or it is not correct
for the sake of modelling process.

2.2. Determining the conditional probabilities

The Bayesian network parameters, as the conditional probabilities are the crucial elements of the
bayesian network-based models and they play an important role in the inferring process. Determining
these parameters is the most difficult and controversial problem. In diagnostic expert systems these
parameters are very often based on totally subjective estimates of the certain of an event and they
are usually assessed by experts from a given domain or bases on passive observations of the identical
or similar systems. In many cases the knowledge of experts is inaccurate, contradictory and it is
sometimes only based on intuition. Alternative approach is learning bayesian network parameters
from data, that can be obtained from both physical or numerical models and databases.

2.3. Model identification from data — learning Bayesian network

Learning Bayesian network from data may be grouped into two modelling situations. The first is
called qualitative learning and consists in establishing the structure using the database of cases.
The second one concerns determining parameters of the network (conditional probabilities) and
it is called quantitative learning. There is a lot of programs, which is useful for such learning,
but a large majority of them are limited only to quantitative learning (e.g. Netica [20] for earlier
built structure (e.g. according to Sec. 2.1). Some programs enable full identification of model from
data i.e. qualitative and quantitative learning (e.g. Belief Network PowerConstructor [7]). Learning
Bayesian network is widely described in many papers. As a starting reference in Bayesian network
and learning matter it can be recommended the important book of Finn V. Jensen [13]. Many
interesting overviews in this filed also can be found (e.g. [3, 10, 12, 15, 16] etc.).
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2.4. Sensitivity analysis

The parameters assigned on knowledge of the experts or determined in the process of learning, may
be imprecise. Such a situation is inevitable. Most of the time a very high precision in the parameters
is not required, but on the other hand there may be a limited number of parameters with a significant
impact on the result. These parameters are called weak points of the model (network). The use of
sensitivity analysis makes it possible to find a list of such points (parameters) of the network. Such
a list may be useful in the next development steps to tune the network by make more precise
assessments of a few identified probabilities.

In case of learning bayesian models it is possible to take advantage of one-way sensitivity analysis,
which can be performed in at least two totally different manners. The first simple method consists
of varying the considered parameter by small values. Observed simultaneous changes in the selected
network output allow calculation of sensitivities [6]. The second more sophisticated method is based
on parametric modelling of relations between the considered parameter and the output. The possi-
bility of such parametric modelling was introduced in [21]. The method consist in evaluation of the
coefficients of the function representing the relation between the output value (probability of the
hypothesis node value) and one selected parameter (conditional probability). Such approach allow
determination of the derivative (sensitivity coefficient) for the given value of the input parameter.
Unfortunately, the results of such sensitivity analysis depend strongly on a context or case, i.e.
current states of all observable nodes, which results in large expenditure on the calculation. It is
possible to reduce it by application of so-called sensitivity set. The sensitivity set is a set of all
those, and only those, nodes whose variation of conditional and a’priori probabilities may affect the
network output. The practical application of this method is presented in [4].

3. EXAMPLES OF LEARNING BAYESIAN NETWORK

Model identification from data will be presented for data obtained from simulation model (MAAP4
— Modular Accident Analysis Program [18]) of nuclear reactor (Boiling Water Reactor). For the
purpose of learning Bayesian network two programs: Netica [20] (quantitative learning) and Belief
Network PowerConstructor [7] (qualitative and quantitative learning) were applied. The learning
examples was prepared on the basis of available data [5]. The data contain results of simulation
for major accidents. The accident scenarios were considered as an element of Cartesian product
of the following elementary states: water-pipe failure (small, medium, large), steam-pipe failure
(small, medium, large), leakage between drywell and wetwell (small, medium, large), failure of safety
systems (operate, non-operate). The following signals were the output from the simulation model:
pressure in reactor containment, temperature in reactor containment, hydrogen concentration in
reactor containment, temperature of water in wetwell, pressure in wetwell, water level in wetwell,
pressure in reactor vessel, water level in reactor vessel.
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Fig. 2. Preparation of the learning data
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It was necessary to discretizing the data (output signals) (Fig. 2) to learn Bayesian networks.
It was performed through breaking up the total range of the signals derivative into a number of
subranges. The appropriate numbers showing where one subrange ends and the next begins were
assumed (Fig. 3). Each subrange corresponds to one state of the discrete version of the variable.
All was performed in Matlab enviroment [17]. The Table 1 shows selected learning examples for
different failure.
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Fig. 3. Discretization of the data on the basis of the derivative value

Table 1. Selected learning examples

Failure Consider features
Type of Size of | Size of Status of PT::;‘:[ i l:{:le{n Pressure in | Temp. in H, Pressure in | Temp. in | Water level
failure failure | leakage [safety systems | "Cocor | eactor v. containment|  cont. concent. | wetwell | wetwell | inwetwell
Water pipe - rapidly | . , ; . . rapidly rapidly
broak Large Small Operate decrease | increase | increase increase | constant | increase | . ' o e
W i A :
ater pipe Medium Small Operate decrease |decrease | decrease | decrease | constant | decrease | increase decrease
break
Water pipe ‘ rapidly g ; rapidly . rapidly .
Medium 4 - Z 5 R increase
Broik 1 Small Non-operate prosiis o decrease | increase increase | i o oo | INCTEASE  HC o cice
Water pipe . | rapidly Snd ag i i
tieak Large Small Operate decrease citaes decrease decrease | constant increase increase decrease
St;::lf iPe Small Small Operate decrease | constant | constant increase | constant | increase increase constant
St;:;:gnpe Medium Medium | Non-operate | decrease |decrease | increase increase | decrease | increase | increase increase
Water pi . i : :
o Medium Large Operate rapidly decrease | decrease | decrease | constant increase increase decrease
break decrease
Water pipe 1 rapidly . A rapidly .
| arge n-operate constant | increase S : ncrease
Kok Small rg Non-op: e decrease decrease | increase e incre;
team pipe i
S;re al? P Small Large Operate decrease |constant | decrease J:gga:jsle constant | constant | decrease decrease

3.1. Results

In case of Netica program, which allows only to quantitative learning (determining conditional
probabilities), the structure presented in Fig. 4 was assumed. The failures were established as the
hypothesis variables (type of failure, size of failure, size of leakage and status of safety systems). The
information variables were assumed as the symptoms of the failure (pressure in the reactor vessel,
water level in the reactor vessel, pressure in the containment, temperature in the containment, Ho
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concentration in the wetwell, temperature in the wetwell, water level in the wetwell). The links
between nodes were modelled as cause-effect relations i.e. from failures to symptoms.

In case of Belief Network PowerConstructor, the structure obtained as a result of qualitative
learning is presented in Fig. 5.

From set of 288 learning examples, 4 testing examples were chosen randomly in order to verify
obtained models. The values of the symptoms for them are presented in Table 2.

The results of verification of the models, identified by both Netica and Belief Network Power-
Constructor, are presented in Table 3 as the a’posteriori probabilities.
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Fig. 4. The structure of Bayesian network for Netica quantitative learning
Table 2. The testing examples
Consider features
Pressure in | Water level in Pressure in Temperature in H bt Pressure in | Temperature in | Water level in
react. vessel | react. vessel containment containment ReCTPBRHEION wetwell wetwell wetwell
decrease constant constant increase constant increase increase constant
decrease decrease increase decrease decrease increase increase increase
decrease decrease increase decrease rapidly decrease increase increase increase
decrease decrease decrease decrease constant increase increase increase
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Fig. 5. The structure of Bayesian network as a result from Belief Network PowerConstructor

Table 3. The results of the models verification

Failure
Type of Pmbabﬂg{; Sine of Probabil}i;l); St f Pmbab“‘i;t;}; Status of Probabilli;tl);
failure | Netica PC failure Netica PC leakage |Netica PC safety systems | Netica PC
S‘i)if;‘aﬁipe 099 | 099 | small 032 | 048 small | 0.58 | 0.33 operate 091 | 071
SAMPIPE | 975 | 0.62 | medium | 063 | 0.43 small | 052 | 0.40 | non-operate | 0.93 | 0.98
\'V:::;iipe 084 | 0.93 medium 0.78 0.43 small 0.53 | 0.40 non-operate 0.92 0.98
W‘l‘)‘:éa‘]’(ipc 073 | 0.88 | medium 057 | 043 small 0.46 | 0.40 operate 0.94 | 0.99

3.2. Conclusions

The obtained results are satisfactory. The errors (small values of probability) may be caused by
small number of learning examples and/or reduced accuracy affected by earlier discretization and
change of the quantitative values to the qualitative values.

It should be pointed out that the testing set is small and it is selected directly from the learning
data. Obtained networks are probably not precise enough and final models should be more carefully
tested and probably adjust. It can be done for instance with the use of sensitivity analysis.

On the basis of these results one may also conclude that accuracy of model, obtained in quali-
tative and quantitative learning process (learning the structures and parameters — Belief Network
PowerConstructor), is considerable smaller. It comes from the fact that the qualitative learning is
new and complex matter and existing methods are experimental and still evolving,.
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