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The aim to the paper is to optimize 2-dimensional elastic structures subjected to cyclic load. The loading
can result in crack forming, so the aim of the optimization is to reduce the possibility of crack growth.
The number of loading cycles necessary to crack growth is maximized. To solve the optimization task the
evolutionary algorithm is used. The boundary element method is applied to solve the crack problem. In
order to reduce the number of design variables the parametrical NURSB curves are used to model the
geometry of parts of the structural element boundary.
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1. FORMULATION OF THE TASK

Cracks can occur in many real structures, so fracture mechanics problems seem to be very impor-
tant from the technical point of view. Crack may occur in the structure due to the technological
processes or can arise during the structure operation. The ability of the crack identification during
the exploitation of the structure is essential. There are different methods of non-destructive crack
identification, mainly using responses of the structure (e.g. [3]).

The reduction of the crack disadvantageous influence on the structure can be achieved using
shape optimization methods. The publications devoted to the shape optimization of the cracked
structures can be divided in two general parts:

e minimization of the stress intensity factors (e.g. [14, 16, 17]);

¢ maximization of the fatigue life time of the structure (e.g. [7, 18]).

The problem considered in present paper belongs to the second part. The modification of the
structure shape to reduce the possibility of crack arising is considered. If the cyclic load is applied
to the structure it can be treated as the increasing of the loading cycle number necessary to extend
the crack.

The aim of the paper is to develop a method of the shape optimization of mechanical structures
under cyclic load in order to reduce the influence of arising cracks and as a consequence to increase
the lifetime of these structures. To solve this task evolutionary algorithm is used as the optimization
method and the boundary element method is employed to solve the crack problem. The external
boundary of the optimized structure is modelled using parametric curves to reduce the number of
design variables.

2-dimensional structural elements in plane stress conditions, made of an isotropic, linear mate-
rial are optimized. The optimization task is defined as the maximization of an objective function
representing number of loading cycles necessary to extend the crack.
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2. EVOLUTIONARY ALGORITHMS

In many practical optimization problems the application of the “traditional”, especially gradient
methods is limited. It is connected with difficulties that occur when the objective function gradient
is calculated. Gradient methods are very accurate and fast, but the objective function must be
continuous and the probability of convergence to a local optimum is very large.

In a few recent decades alternating optimization methods, especially based on the “evolution”
of the possible solutions towards better result, have arisen [9]. Methods like. genetic algorithms,
evolutionary strategies, genetic programming and evolutionary programming are nowadays called
evolutionary algorithms (EA) or the evolutionary programs.

EAs can be treated as modified and generalised genetic algorithms with modified operators
(e.g. simple, arithmetical, heuristic crossovers; uniform, boundary and non-uniform mutations and
others). The probability of operators can be variable. Apart from the classical selection (roulette
wheel selection) other methods of the selection, like the ranking or tournament selections can be
used. The floating point chromosome coding is usually used [1].

EAs are especially convenient when the objective function gradient value is difficult of impossible
to obtain (e.g. discrete optimization problems) or when the objective function is multi-modal. EA
maps the process of the individuals’ adaptation to the environment. The individuals are called
chromosomes and the objective (fitness) function plays role of the environment.

An EA starts from the initial population Py of chromosomes, being the feasible solutions of
the optimization task. Working on the population of the possible solutions highly increases the
probability of reaching the global optimum. Each chromosome has its value calculated by means
of fitness function. The best part of the population is selected to the temporary population Tj
(some chromosomes more than once). Genetic operators like mutation and crossover modify some
chromosomes in the temporary population which results in the offspring population Op. Then, the
new population Pj is created using Op and Py populations. This procedure is repeated until the

termination condition is satisfied (2).
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Fig. 1. The block diagram of an evolutionary algorithm
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Due to the relatively long computation time and difficulties with finding the precise optimal value,
EAs are often treated as the “last chance optimization algorithms”. In many practical engineering
optimization tasks the most time-consuming part of calculations is the evaluation of the fitness
function because the boundary-value problem has to be solved.

To reduce the computation time distributed version of EA (DEA) is used [5]. DEA can use many
processors to calculate fitness function. Each population of chromosomes is divided into two or
more subpopulations evolving almost independently, interchanging some chromosomes during the
migration phase. The block diagram of DEA for one subpopulation is presented in Fig. 2.
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Fig. 2. The distributed evolutionary algorithm (for one subpopulation)

In the presented version of DEA fitness function for each chromosome can be calculated on the
processing unit chosen by the managing process, independently on the number of subpopulations. So
it is theoretically possible to use the number processing units equal to the number of subpopulations
times the number of chromosomes in subpopulation [4].

3. FATIGUE CRACK GROWTH

Arising of the crack may significantly reduce the lifetime of structures. The most common fracture
case seems to be a fatigue crack growth. It is also very dangerous for the structure, since the crack
grows from a very small size to a critical one with no visible effect of this. As the effect a damage
of the structure occurs. The possibility of the element lifetime prediction is crucial. In general, the
velocity of the crack growth (determining the lifetime of the element) can be presented as follows [10]:

dl
— = LOY

dN f(a, ’C7 7R’ X)’ (1)
where: N - the number of loading cycles, [ — current crack length, o — stress expressed by stress am-
plitude, C' — material constants, Y — geometrical parameters of the element or crack, R = o'max/0min
- cycle ratio, x — function (functional) representing loading history.
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There are many formulas for f(-) function describing velocity of the crack growth. One of the
most frequently used is the Paris equation in the form:

dl

% = c(AK)™, (2)

where: ¢, m — experimentally determined material constants, AKX = Kpax — Kmin, K — stress
intensity factor for single-mode fracture analysis.

The Paris law is suitable for the velocity of the crack propagation between 10~2 and 10~6 m /cycle.
By integrating of Eq. (2) one can calculate the number of cycles N necessary to extend the crack
from Iy to lg:

lo il
N = ——dl. 3
n CAK)™ ®)

For the mixed-mode fracture analysis AK is replaced by AKeg [15]

AKZ = AK? + 28K, ' (4)
The stress intensity factor range for each mode is given by:

AKi = K; max — Ki min = Ki_ max(1— R), (5)

where: R = 0in/0max — stress amplitude ratio of the loading cycle.

The crack-growth process is numerically simulated by incremental analysis. A boundary-value
problem is solved for each step of the expanding of the crack. The direction of the crack growth is
determined using the maximum principal stress criterion in the following form [13]:

Kpsind; + Ky (3cosfy — 1) =0, (6)

where: 6; — the angular co-ordinate of the tangent to the crack path, K7, K7 — mode I and II stress
intensity factors.
Angle 6; indicates the direction perpendicular to the maximum principal stress direction.

4. BOUNDARY ELEMENT METHOD IN FRACTURE MECHANICS

In order to solve the boundary-value problem one of the numerical methods has to be used. The
most popular and wide applied one is the finite element method (FEM), but in the present case the
boundary element method (BEM) is more convenient. The main reason is that the crack is a part
of the boundary, so that (assuming the lack of body forces) there is no necessity to discretize the
inside of the body and the dimension of the boundary-value problem is reduced. The BEM is also
capable of accurate modelling the high stress gradients near the crack tip [2].

The displacement of an arbitrary point x can be represented by the boundary displacement
integral equation:

c(x)u(x) = /F U(x,y)p(y)dl(y) - /F P(x,y)uy)dl(y), €T (7)

where: U(x,y), P(x,y) — fundamental solutions of elastostatics; c¢(x) — a constant depending on the
collocation point (x) position; y — the boundary point.

If Eq. (7) is used on both crack surfaces, then two identical equations are formed. As the result
the set of the algebraic equations obtained after the discretization of the body becomes singular.
There are a few techniques allowing overcoming this problem [6]. In the Green’s function method
specific Green’s functions, which include the exact solution for a traction-free crack, are used. This
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method is restricted to two-dimensional problems with linear cracks. In the multiregion method the
body is divided into parts in the place of the crack (cracks). This method gives the bigger systems
of equations (requires higher discretization) and is especially inconvenient in the case of the crack
propagation.

The dual BEM technique seems to be the most general and is employed in the present paper. In
this technique the additional tractions integral equation is introduced in the form [12]:

1
309 =n| [ Doypw)re) - [ seeyuare)|, ser ®

where: D(x,y), S(x,y) — the third-order fundamental solution tensors, n — the unit outward normal
vector at the collocation point x.

The tractions integral equation is applied on one surface of each crack; the displacement inte-
gral equation is applied on the opposite side of each crack and the remaining boundary as well.
Due to the singularity of the stress field the special boundary elements — discontinuous and semi-
discontinuous ones are applied. The discontinuous elements are used to model the cracks and the
semi- discontinuous elements are applied to model parts of boundaries contacting the edge cracks.

5. NURBS PARAMETRIC CURVES

In order to decrease the number of design variables an the optimization task the parametric NURBS
curves are used to model the external boundary of optimized elements. NURBS (Non-Uniform
Rational B-Splines) are generalized non-rational B-splines and non-rational and rational Bezier
curves. A NURBS curve is defined as [8]:

C(t) = = i ket (9)
kz: Nk,n(t)wk
=0

where: P — control points, w; — the weight of control points, N;, — n-th-degree B-spline basis
functions defined on the knot vector in the form:

1= a,.“,a,tn+4,.",tnv_n_l,b,.“,b . (10)
N N~
n+1 n+1

An example of a NURBS curve is presented in Fig. 3.
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Fig. 3. The example of a closed NURBS curve
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Using NUSBS curves it is possible to design a large variety of shapes in a flexible way. Changing
discontinuous position of control points and the weight of control points, it is possible to control
the shape of the curve precisely. If control point P; is moved and/or the weight w; is changed, only
a part of the curve on the interval t € [t;, ti+p+1] is modified, which can be significant from the
practical point of view (local approximation).

There are fast, numerically stable and accurate algorithms allowable for NURBS curves [11].

6. OPTIMIZATION PROCEDURE

The aim of the optimization is to minimize the possibility of the crack propagation. The optimization
task can be formulated as the maximization of an objective function J representing the number of
cycles N necessary to extend the crack:

mgx(Jo) = m;a,x(N). (11)

The external shape is expressed by a vector of design variables a = (ar), r=1,...,2R, R - 2 times
number of control points.

Design variables represent co-ordinates of the control points of NURBS curves. Chromosome,
consisting of genes representing design variables, has the form:

ch = [a1,az, ....aR] (12)
with constraints:
a;ni“ < o gal, r=1..R. (13)

Each pair of genes, starting from a; and ag, presents the z and y co-ordinates of one control point.
Limitations for the maximum von Mises stresses on the boundary and limitations for the elements
area and are imposed. The number of cycles N necessary to extend the crack is calculated using
Eq. (3).
Two approaches to solve the problem are considered (Fig. 4). In the first one, (“fixed crack”) the
analysis of the element with primary shape is performed:

e the position of the boundary point with the maximum value of the von Mises stresses is found;

e an initial, relatively small edge crack, is introduced in the direction perpendicular to the maxi-
mum principal stress direction;

e the optimization process (the modification of the element shape and the calculation of the number
of cycles N necessary to extend the crack) is performed.

In this approach the size and position of the crack are not changed and the part of boundary with
initial crack is not modified. For each generated shape the boundary-value problem is calculated
only once.

In the second approach (“free crack”) optimization process starts and in each optimization step
the following stages are performed:

o for each generated possible solution (chromosome representing modified geometry) the boundary-
value problem is solved and the boundary point with the maximum value of the von Mises stresses
is found;

e an initial crack is introduced in the direction perpendicular to the maximum principal stress
direction;
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Fig. 4. Two approaches to the optimization: a) “fixed crack”, b) “free crack”

e the boundary-value problem is solved once again and the number of cycles IV necessary to extend
the crack is calculated.

In this approach the boundary-value problem has to be calculated twice, but the crack can also
occur on the modified part of the boundary. As a result the position and direction of the crack can
be different for various generated shapes of the structural element.

7. NUMERICAL EXAMPLES

The shape optimization of structural elements being in the plane stress state and subjected to the
cyclic load is performed.

The material elastic constants of the elements are: E = 2e5 MPa, v = 0.3. It is assumed that
the fatigue cracking process is caused by a constant cycling load.

Each population of the distributed EA is divided into 2 subpopulations, regardless the number of
used processors and the number of chromosomes in population. The following evolutionary operators
are used:

e simple crossover with probability ps = 0.9;
e uniform mutation with probability p, = 0.1;
e Gaussian mutation with probability p,, = 1/i; (4 — chromosome length).

Ranking selection is employed as the selection method and the floating-point chromosome coding
is applied.

7.1. Example 1 — first approach

A 2-D structural element loaded and fixed as shown in Fig. 5 is optimized. The modified free part
of the boundary is modelled using the NURBS curve with 7 control points. The first and the last
control points are fixed.
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Fig. 5. A structural element 1: a) loaded and fixed, b) a modified part of the boundary and ranges
of the control points

The amplitude ratio of the cyclic load is R = 2/3 and the material constants for Paris equa-
tion are: ¢ = 5E—12 and m = 3.4. Each chromosome is built of 10 genes being design variables
representing the co-ordinates of 5 control points of a NURBS curve. Two cases are considered:

e the final area of the element is not bigger than the area of the primary element;

e the final area of the element can be increased by 10%.

Maximum von Mises reduced stresses are limited to op = 220 MPa. The population consists of
40 chromosomes divided into 2 subpopulations.

The EA is stopped after 50 generations. The optimization results are presented in Fig. 6.

a) b)

Fig. 6. A structural element 1 - optimal shapes: a) fixed area, b) increased area

The initial and final values of cycle numbers, the maximum stresses and the areas of the element
are collected in Table 1.

Table 1. A structural element 1 — results

Number | Allow. 0 | 0 max | Allow. area | Area

of cycles | [MPa] | [MPa] [m?] [m?]
Primary shape with initial crack | 2.9343-107 - 197.92 - 0.1084
Final shape with fixed area 4.6659-107 9200 219.99 0.1084 0.1083
Final shape with increase area 5.3538-108 ) 219.99 0.1192 0.1141
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7.2. Example 2 — second approach

A 2-D structural element loaded and fixed as shown in Fig. 7 is optimized. Two cases are considered:
non-symmetrical and symmetrical. In the non-symmetrical case each chromosome consists of 24
design variables representing the co-ordinates of 12 control points (3 control points for each of 4
NURBS curve). In the symmetrical case each chromosome consists of 12 design variables representing
the co-ordinates of 6 control points (3 control points for each of 3 NURBS curve). The vertical axis
is the axis of symmetry. The symmetrical case is probably more convenient from the practical point
of view (for example production of such elements).
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Fig. 7. A structural element 2: a) loaded and fixed, b) modified parts of the boundary and ranges
of the control points

The parameters of Paris equation are assumed as: ¢ = 4.62E—12 and m = 3.3 and the amplitude
ratio of the cyclic load is R = 2/3. To compare the number of cycles N with the initial shape the
position of the maximum von Mises stress is found and the reference crack is introduced in the
proper direction. Then the boundary-value problem is solved and N is calculated.

Two cases are considered:

e the final area of the element is not bigger than the area of the primary element;

e the final area of the element can be increased by 10%.

Maximum von Mises reduced stresses are limited to o, = 120 MPa. The population consists of
60 chromosomes divided into 2 subpopulations. The EA is stopped after 80 generations.

Shapes after optimization are presented in Fig. 8 (the non-symmetrical case) and Fig. 9 (the
symmetrical case). The initial and final values of cycle numbers, maximum stresses and areas of the
element are collected in Table 2. ;

a) b)

Fig. 8. A structural element 2 — optimal shapes for non-symmetrical case: a) fixed area, b) increased area
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b)

Fig. 9. A structural element 2 — optimal shapes for symmetrical case: a) fixed area, b) increased area

Table 2. A structural element 2 — results

Number Allow. o Allow. Area
of cycles | o [MPa] | [MPa] | area [m?] | [m?]
Primary shape
with a ref. crack | 1.9324-107 - 115.05 - 0.7080
non-symmetrical case S s
constant area 2.4739-108 118.63 | 0.0708 | 0.07078
Final shape with 120
increased area 1.1097-10%° 112.57 | 0.0779 | 0.07514
symmetrical case Hins shape ik
constant area 1.7073-108 114.79 0.0708 0.06289
Final shape with
increased area 1.6019-1010 108.98 | 0.0779 | 0.07129

8. CONCLUDING REMARKS

In the present paper the shape optimization of the elements subjected to the cyclic loading has

been presented. The aim of optimization is to maximize the number of loading cycles to extend the
possible crack. Two approaches to the problem has been presented and the non-symmetrical and

symmetrical cases has been considered. |
In order to solve the problem the evolutionary algorithms, the boundary element method and |

parametric curves have been employed. The only information evolutionary algorithms need to work

is the information about the objective function — the calculation of the fitness function gradient

(often not possible or hard to perform) is unnecessary. Time-consuming evolutionary calculations

can be accelerated by using the distributed version of the EA. The use of parametric curves like

NURBS curves allows modelling complex shapes reducing the number of design variables.
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