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In the paper, Artificial Neural Network with hidden layers is used to approximate the functional depen-
dence of the effective properties of a composite on the physical properties of its micro-components. Two
numerical examples have been examined in order to demostrate this approach. The first one introduces
geometrical parameters of the cell of periodicity into ANN training process. It proves the ability of ANN
to catch the behaviour of the composite material based on the properties of the components and their
spatial arrangement at micro level. The second example deals with a special case of the self-repetitive com-
posite structure. It has been shown that, in the limit, the geometry and behaviour of such a composite is
consistent with the fractal form known in the literature as the Sierpinski’s carpet.

Keywords: neural network, homogenisation, hierarchical composite

1. INTRODUCTION

In the previous works [2, 6, 10] of the authors an Artificial Neural Network (ANN) has been used
to approximate an effective constitutive law for a composite. It was possible to define an observ-
able at macro level material behaviour, having given constitutive description of micro-components
and a micro-geometry of the composition. As it is known, the effective behaviour for composite is
usually very difficult to handle by a closed form formula, except for self-consistent homogenisation.
Unfortunately, this approach is not always applicable. In particular, it is not applicable in the case
when the micro-geometry of the composition is complex, has a structural character and cannot be
sufficiently characterised by the only volume fraction of components. Examples of such a case can be
found in [6, 7]. Thus, an ANN trained with a set of examples, replaces well the symbolic definition
of the constitutive relationships. In the present paper the same idea is exploited but now in the case
of hierarchical composites and in a very different organisation of the approximation. In the quoted
above former papers, ANN substituted the functional relationships between an increment of average
stress tensor and increments of average strain tensor.

Ac®™® = ANN@{ o*° Ae®* }. (1)

The symbol @ in (1) denotes an action of an “ANN operator” on the ordered set of values (o, )
are stress and strains respectively, A denotes an increment.

Here, the ANN approximates the functional dependence of elements of the effective constitutive
tensor D;;x; on the constitutive tensors D of each of n components of the composite and on some
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scalar parameters c characterising the geometry of the microstructure:
D, = ANN@{ DO . D™ ¢k}, (2)

Many natural and man-made materials exhibit an internal structure at more than one length
scale. The simplest case occurs when between the macro and micro levels an intermediary structure
forms a meso-structural level. Materials with internal structure may show also a hierarchy of more
than one, intermediary structural levels. A typical reticular structure with a huge number of bars
can be seen as a three level composition: the macro behaviour can be modelled as a shell, the meso
level is that of the elementary, repetitive reticular cell, the micro is the bar itself of the complex
cross section or being assembled from different materials. Some abstract, fractal-like structures can
be considered as composites for which the number of structural levels tends to infinity.

In this paper the ANN will be used to approximate, memorise and even discover the law governed
an effective (observable at macro scale) behaviour for composites, the microstructure of which
depends on some parameters of mechanical or geometrical nature. The simple consequence of this is
the possibility of computation of the effective characteristics for hierarchical composites. Of course,
the ANN will be used here as a suitable and powerful tool of approximation of the given knowledge
on the macro behaviour of the composite. The source of knowledge must be found elsewhere. In this
paper, the homogenisation theory will be used as an unique source of knowledge on the constitutive
relationships between mean (observable at the macro level) mechanical and kinematical variables.
The alternative would be a real or numerical experiment (see [2, 6, 10].

In what follows in this introductory part, the theory of homogenisation and the use of ANN in
mechanics will be shortly summarised, finally the specific application of the ANN will be presented,
which is the subject of the present paper. The introduction will be finished with some ideas of
possible application of the presented numerical tool of analysis. In the following sections details of
the method and some illustrative examples will be presented.

1.1. Theory of homogenisation as a source of data for ANN training

The asymptotic theory of homogenisation permits to deduce the matrix of effective material char-
acteristics for composite from given properties of components and their spatial arrangement inside
the representative volume of the heterogeneous materials. The classical approach assumes (see [?])
that the representative volume has the form of the exactly repetitive portion of the material, called
“cell of periodicity”. The separation of scales is assumed between the single cell and the whole of
the body. The small parameter € characterising this scale separation is computed as a ratio between
characteristic lengths of macro scale and that of the cell of periodicity. This assumption, applied to
the multi-scale material, requires the scale separation at each level of the structure.

Let u®, o be the solution of the “homogenised” problem i.e. the problem in which the variable
material coefficients D(y) are replaced with some unknown constant values D”. We suppose, that
the periodicity of material characteristics imposes an analogous periodical perturbation on the
quantities describing the mechanical behaviour of the body. Hence, for displacements we have:

u'(x) = u'(x) + eul(x,y), (3)

Bug (x)

where v (x,y) = x(y) 9z,

+ Ci(x) and x is periodic on the cell. (4)
Two coordinate systems are used in the above: x for macro level, y for micro level (in general — for
an immediate lower level in the hierarchy of composition).

The applied version of the homogenisation technique needs a solution of a boundary value prob-
lem (BVP) with periodic boundary condition posed over the cell of periodicity for each geometry
of the cell and each permutation of values of the inside material properties:
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Once the so-called homogenisation function x is found, the effective characteristics are computed
according to the formula:

Dl = W™ [ aigu) (Sinda + X0 ) A .
Y

Let us consider the following “from top to bottom” description of the considered hierarchical
composite. At the macro level the material filling a domain §2 of unitary diameter can be considered
as a homogeneous one (but is not). The whole domain {2 is made of a huge number of periodically
repeated, heterogeneous cells £2! of the diameter &, small with respect to unity. Scaling the cell by
(1/€) reveals that it is composed of two materials of the first level of composition (n materials in
general, we limit ourselves to n = 2). Each of them can be considered as homogeneous.

Any i-th of the two materials filling the cell £2! of the first sub-structural level can be either
homogeneous or made of a huge number of periodically repeated heterogeneous cells .Qf of the
diameter of order 2. Two types of cells of periodicity define a second sub-structural level. Each
of the cells can be treated then in the same manner as it was before with the cell £2' in order to
discover a deeper structural level. For each of the levels the analysis analogous to the one described
by equations (3)-(6) can be formulated. In the case of the lower level, next to that the equation (3)
concerns. This analysis starts with decomposition:

,ws(y) = wO(y) g 5w1(y:z) where wO(y) = ul(yaxﬁxed at higher level) (7)

Boundary value problems must be formulated now for the cell of periodicity of the lower level and
for the corresponding homogenization function, the lower order, local coordinate system being z.

It is assumed that a micro level exists. At the micro level all the components of all the cells
of periodicity are truly homogeneous. The homogenization procedure starts at the micro level and
computes the effective material properties for the immediately higher level.

All the effective characteristics computed in the examples follow the algorithm above outlined
and are interpreted in the formalism of the Finite Element Method.

The “production” of examples for the ANN training is thus time consuming, but any other use
of this technique inside the computational algorithm is time consuming as well. ANN used as a
“functional formula” replaces the solution of the BVP thus allows to spare the time of computations
in the case of multilevel composites.

1.2. Application of ANN as an approximation tool in mechanics

The idea of using a neural network in constitutive modelling was originally proposed by Ghaboussi
in [3]. The experience of the authors in representation of effective constitutive law for composite
bodies is reported in [9, 10]. In these papers the ANN model is incorporated into a FE code as a
kind of material description. In all these papers the most popular ANN of Back Propagation type
is widely used. The paper [13] gives the state of art surveys.

From a physical point of view, ANN can be considered as a collection of some simple processing
units (nodes) that are mutually interconnected by connectors with adjustable weights. This system of
logical or physical units (i.e. elements of a computer software or hardware) is organised to transform
an input signal into an output signal. For an exhaustive and fundamental introduction to the ANN
technique the reader is referred to any of the textbooks: [4, 5, 11]. The ANN is trained by means
of the BP (Back Propagation) algorithm. According to this method, the weights of connections
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are enhanced iteratively by successive corrections, proportional to the error, which is transmitted
through the link. This process is called “training” and is continued until the error between the neural
network output and the desired (known) output is minimised for a whole set of pairs: given input
- known output.

A non-symbolic, neural model is constructed as follows: the ANN is trained first to reflect cor-
rectly a set of data acquired from an experimental test. Then the network capability for automatic
generalisation (interpolation between some data sets) allows us to interpret the ANN output for the
input data not presented to the network.

In the application which will be presented, the use of ANN is justified by a set of theorems
(by various authors, see for example [1]) which asserts, that ANN is an universal approximator of a
function of many variables, a functional or an operator. Because of this, the functional dependencies
between effective properties of the composite and the characteristics of the components of the cell
of periodicity can be certainly handled with sufficiently trained ANN.

1.3. Approximation of dependence of effective properties on the micro
and meso structural data

As it is stated in (2), independent variables are here the mechanical properties of the components
and some parameters invented to describe its geometrical repartition in the cell. The functions to
be approximated:

Dfﬁcl=Dfﬁcl(D(1) . DWW k) (8)

are known from examples furnished by direct application of the homogenisation procedure for the
exemplary cells.
The Artificial Neural Network for the approximation is constructed as follows:

e First group of neurons of input layer are valued with the given values of constitutive parameters
of the materials of the single micro-structural cell. The second group of neurons at the input are
interpreted as parameters describing the geometry of the micro-structural cell. The geometry of
the micro structure must be, of course, “parametrisable” by few parameters only.

e Output layer contains neurons valued with values of effective constitutive parameters of the
“homogenised” material.

e Hidden layers are constructed to assure the best approximation of the unknown relation between
the material properties of components, their geometrical organisation and effective material
properties at the output. The best approximation is understand in the usual sense and measured
by the test and training errors. It is limited by the number and quality of the data used in
training.

In the elasticity the number of the input parameters varies between: 2 time the number of ma-
terials plus number of geometrical parameters for isotropic components and: 21 time the number
of materials plus number of geometrical parameters for anisotropy. It is to note, that two material
parameters at the input are applicable only when the input data are from the micro level. Number
of the output parameters depends on the type of effective constitutive relationships. This is the-
oretically known a priori. The maximum number is 21 parameter but only effective orthotropy in
3D with 9 parameters was tested by the authors, up to now. It is to note, that for a case of porous
material, the void treated as the second material do not requires any additional input neuron. If the
geometry of all the levels is obtained by a scaling of the same figure, the geometrical parameters in
the input layer can also be omitted.

The following algorithm is proposed to perform the approximation of the effective characteristics
of the composite:
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1. Preparation of the learning data: for casual values of the materials data and for each kind of cell
of periodicity (geometry) the effective material characteristics are computed by a FE solution of
BVP with periodic conditions suitably post-processed.

2. Training of the network with the pairs of sets: given random input and computed (as said above),
corresponding output. Interpretations of input and output data are defined in Sec. 2.1.2.

3. Having the well trained ANN, starting at the micro-level, for each structural level:

e for each kind of cell of periodicity at the current level:

— run the neural network in the recall mode with input data characterising the current
level of the structure,

— complete the sets of input data for each cell of higher structural level from ANN outputs
obtained at the previous level,

e for each cell of periodicity at the next (higher) level of composition:

— run the same neural network in the recall mode with suitably completed input data plus
information characterising the geometry of the cell of periodicity of the higher structural
level.

At the macro level algorithm stops.

In Fig. 1 a typical scheme of the use of ANN for two level approximation of effective characteristics
is shown. The micro cell was build from two materials: bronze and a alloy of Nb and Sn. This
composite made a part of a meso cell of periodicity contained also a homogeneous component that
was again bronze. It is seen in Fig. 1 that nine, simple neural networks, each one specialised with
one effective parameter, obtain the approximation of nine entries of effective stiffness matrix at
the meso level. Because of the geometry of the micro cell, the composite part of the meso cell was
expected to be orthotropic. Since the geometry of the micro level as well as the properties of the
alloy was not changed, at the input of each of nine ANN; there are only two variable material
parameter: Young and Poisson modulus of bronze that varied strongly with temperature and with
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Fig. 1. Flow chart of the typical neural network application for the hierarchical composite with one intermedi-
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plastic yielding. At the output thus an evolution is obtained, with temperature and with yielding
of each of material parameters of the heterogeneous component of the meso cell of periodicity. In
the flow chart in Fig. 1 it is shown that in turn, at the meso level, nine independent ANNjy, each
one with nine effective material parameters of the composite part of the cell and two (the Young
and Poisson moduli) of the homogenous component, are used to approximate nine entries of the
effective, global stiffness matrix (at the macro level). In this case the influence of temperature and of
the material yielding is taken into account again because of variable material parameters of bronze
and because of the changes of composite characteristics, discovered and approximated by ANN;
at the micro-meso passage. The geometry of the cell is unchanged. The Figure 1 shows two level
approximation of stiffness matrix that is used with very satisfying results in one of the practical
applications of the authors.

1.4. Applications of the presented method

Of course, using any of homogenisation theories and applying it as many times as many levels of
hierarchy there are, it is possible to compute the effective properties of a hierarchical composite
without any use of ANN. In this case it is, however, necessary to solve at each step of computations
(or — at each structural level) a boundary value problem for local perturbation using FE method.
The procedure becomes thus time consuming. The time of a single run of computation is usually
reasonable so if performed once forever for a given composite the procedure is acceptable. Unfortu-
nately, in some recent numerical models of hierarchical composites [6, 8] the computations of effective
coefficients are performed at each step of loading and in many zones of the micro-heterogeneous
body. This necessity is due to the fact that locally, at the micro level, each of homogeneous compo-
nents can change its mechanical properties, depending on the stress level they subject (fracturing,
plastification, damage, ...). If this is a common feature for many micro-cells in a zone that can
be considered as a macro domain (being still a sub-region of the considered body), a new effective
properties must be calculated for this region. In practice, this is a region covered by a single element
of the global FE mesh. The approach becomes impracticable if the FE solution is repeated and a
suitable post-processing for each load step and for each element of the global mesh in order to obtain
the effective constitutive data - an input for a global FE model is needed. In contrast, the same
chain of computations can be achieved within a reasonable time period when the effective properties
are read as an output signal from the well trained ANN. Because of this the presented application
of the ANN is very important (even crucial!) in the numerical practice of the authors.

Another interesting field of possible application of the presented numerical techniques is the-
ory and practice of a so-called Functionally Graduated Materials (FGM). Such materials can be
considered as generalisation of the usual composite. While for a composite the effective properties
are usually constant (it can be considered as homogeneous), for FGM the effective properties are
functions of global variable z. This dependence can be obtained by parametrisation of the cell of
periodicity thus in various regions the cell of periodicity can have different concentration of forcing
in the matrix or gradually changed shape of inclusion. One can see each of Figs. 2b) as taken from
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Fig. 2. a) Examples of the Zlike class of cells of periodicity, b) “smooth” transition from horizontal strata,
to diagonal one (Functionally Graduated Material)
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different points of the FGM. Of course, if the functional dependence of geometrical parameter of
the cell could be associated with functional dependence of the effective material coefficients — the
optimisation and, at least, a simple FE analysis of such the structure would be numerically practi-
cable. The use of ANN for approximation of this functional dependence in application to FGM is
analysed by the authors and will be presented in a separate paper.

In the present publication the algorithm and a numerical efficiency of the proposed tool of analysis
of effective properties of composites is only shown.

2. NUMERICAL EXAMPLES
2.1. ANN as a representation of a Zlike class of cells of periodicity

Describing the composite structure one has in mind two groups of data: material properties of
the components and their spatial arrangement inside the structure. Especially, for the periodic
composites, the cells of periodicity are distinguished at micro level of the structure. In case of
hierarchical composites a couple of structural levels can be identified. Each level is described by
a set of material and geometrical parameters. Asymptotic homogenisation allows to compute the
effective parameters of the composite, but becames numerically to expensive if the component
materials change their properties during loading. The geometry of the composition may be variable
as well. The example shows how to deal with such kind of problems by means of ANN.

2.1.1. Preparing data for training ANN

This example deals with the class of the plain cells of periodicity shown in Fig. 2. The cells consist
of two elastic materials aranged in a Z-like form. The internal geometry of these cells can be entirely
described by two parameters: the relative thickness of the horizontal strata c; /a and the relative
thickness of the diagonal layer cz/a. The material properties of the components are defined by elastic
coefficients: E1, v1 and Es, vo (see Fig. 3).
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Fig. 3. Geometrical and material characteristics of the considered class of cells of periodicity

The scope of the experiment is to approximate, by means of ANN, the components of the effective
elasticity matrix having at the input the mentioned above 2 geometrical and 4 material parameters.
For the puropses of this example, the following ranges of these variables have been established:

c1 1 () V2 1
E€<O’Z>’ ;€<0, 1 >, El,E2€(0,1>, 1/1,1/2€<0,2). (9)

It’s expected, the designed neural network will represent the continous dependence between the
variables (in their ranges) and the effective properties of the composite. In order to prepare the
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training data for ANN the appropriate representations of these ranges have to be choosen. For this
experiment 12 configurations of the geometrical data are taken into account as shown in Fig. 4.
Obviously, the number of configurations, its distribuition and density in the space of geometrical
data (2-dimensional in this case) depends on the resercher choice only. It’s always a compromise
between the accuracy of the ANN’s approximation quality and the effort needed to preparate the
data for the network and perform the training phase.
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Fig. 4. Graphical representation of (c1/a, c2/a) pairs — geometrical parameters of the cell of periodicity —
used to generate the training data for ANN. The checking point will be used for testing purposes

The parameters of the component materials are generated in a random way. For each pair (c1/a,
c2/a) 50 random patterns of the material parameters Ej, vq, Es, vy are created. It’s assumed that
randomly generated parameters are distribuited in a homogeneus way in the 4-dimensional space
of the material data. Finally, 12 - 50 = 600 input sets are established for training ANN. Targets
for the network are obtained by means of the asymptotic homegenization method (our own code).
600 BVPs with periodic boundary conditions had to be solved in order to calculate the components
of the effective D[3 x 3] matrices. 6 independent components for ortotropy: D1, Dy, D33, Do,
D13, D3 are taken into acount for training purposes.

2.1.2. Training networks

In order to ensure the best behavior during trainig process, 6 independent neural networks were
trained, separately for each output parametetr. The architecture 6-6-3-1 of the networks is chosen as
shown in Fig. 5. Obviously, the architecture 6-hidden-6 (one network for all homogenized parameters)
is also possible, but, from the ANN training point of view, the problem is then worse conditioned.

Training of the networks gives very good results: correlation of the range 0.995 (correlation vary
between 0.994 and 0.996) and the RMS error below 0.01. In order to check the approximation quality
of the ANN the checking geometrical parameters (see Fig. 4) are taken into account and the random
material parameters (from the permitted ranges) were chosen. Figure 6 shows the responses of the
network.

The agreement between the results given by the asymptotic homogenisation method used directly
and the trained neural networks seems very good. It could be expected, the response of the ANN is
of the same, good quality for all inputs from the domain defined by (9).

In addition, for testing purposes, a couple of neural networks have been trained for each compo-
nent of D and the described verification data have been applied to each of them. It’s observed that
the correlation between the results given by the idependently trained ANN’s (i.e. trained starting
from the different sets of weights) is of the range 0.980 — 0.990. It means, the starting parameters
of ANN (weights) and the training process itself does not influence very much the obtained results
and, finally, the FE analysis results. :
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Fig. 5. Neural network of the achitecture 6-6-3-1 used for training. In the presented experiment 6 networks
have been trained (separately for each component of D matrix)
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Fig. 6. Test of the network. Random material parameters and the geometry never used in training were
taken as input data for ANN ‘

Obviously, it’s not enough to describe the dependence between the training errors and the finite
element solution deviations. Such a dependence is very hard (if even possible) to obtain in an
analytical way and the experimental approach is necessary for this purpose. Firstly, one should define
a reliable testing FE example. Then the generalised deviations of the, for example, displacement
fields calculated for the parameters from ANN comparing to the solutions obtained from asymptotic
homogenisation should be specified. The searched dependence is now easy to determine as the errors
given by the network and the errors given by the FE solution are known. The reliability degree of
the network can also be defined. These problems are currently investigated by the authors and will
be presented in the following papers.

In the described way a versatile homogenisation tool for the given class of the composite geo-
metrical structure, i.e. for the cells of periodicity which geometry can be described by two precisely
defined parameters c;/a and cy/a, is obtained. Such a network can be easy icorporated within a
FE code instead of the homogenisation procedures. In this way the numerical costs of computations
can be considerably decreased.

2.2. Hierarchical, self-repetitive composite

This example deals with a self-scaled composite material. The rectangular cell of periodicity con-
taining a rectangular homogeneous inclusion, characterised by E and v is taken into account. The
matrix is made of a composite material except of the deepest, starting micro level, where the ho-
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mogeneus material have been taken. The structure of the matrix is still the same, just scaled down.
Graphical representation of such a structure is shown in Fig. 7. The composite is interpreted here as
the well known structure named Sierpinski’s carpet (see for example [14]). Notice, that this is only
one of the possible arrangements of the recognized cell of periodicity. Especially the scaling factor
might be changed to increase “density” of the cells (for Sierpinski’s carpet only 8 cells constitute
the next level.

Deyy

Cell of periodicity

ll:>B>0

Fig. 7. The self-identity, hierarchical structure of Sierpinski’s carpet. The cell of periodicity is recognized
for such a structure

The asymptotic homogenisation code is used to iterate the limit properties of the composite.
The procedure starts from two homogeneus materials. The calculated effective parameters are then
assumed as the parameters of the matrix material for the next step. The properties of the inclusion
remain unchanged. The procedure continue until the limit is achieved. As is shown in Fig. 8 the
effective parameters of the composite tend to the parameters of the inclusion. This can be easy ex-
plained as it will be noticed that, in the limit, the relative area occupied by the starting homogeneus
matrix material — 0. In other words, the structure tends to be filled by the homogeneus material
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Fig. 8. Evolution of the first component of the effective D matrix. The other components of D shows the
same tendency
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of the inclusion. This is a characteristic feature of the Sierpinski’s carpet. If it will be assumed,
for example, the inclusion is just a hole (what is the original form of this fractal structure) the
9-dimensional composite “plate” becames just a set of points with surface area equal 0.

Exactly the same iterative procedure is applicable in the case of ANN. The network can be trained
having as the input the components of D of the matrix material and, as the target, the components
of Deg taken from asymptotic homogenisation. The material parameters of the inclusion, as they are
constant, can be ommited. During testing, the outputs of the well trained networks should converge
to the known limits (components of D calculated for inclusion) if only the successive inputs are the
results given by the same network in the previous step.

In this example the limit of the effective parameters for a self-repetitive composite has been
achieved and explained. The result seems to be useful for numerical testing of correctness of the
training of artificial neural networks (similar to those trained in previous example). The test is
passed if the series of the computed effective values monotonically converge to known limit.

3. CONCLUSIONS

e For a composite, the functional dependence of effective material properties on parameters de-
scribing the micro-structure cannot be obtained from asymptotic homogenisation but can be
approximated by ANN.

e This approximation is good enough to be iterated several times in order to compute, level by level,
the effective characteristics for hierarchical composite, reducing thus the time of computations
in homogenisation.

e The presented method is applicable in the case when the elements of microstructure depend on
the parameter like temperature, plastic multiplier of other similar. In such a case the method
allow to spare a huge amount of computational time, replacing the solution of boundary value
problem by simple run of ANN in a recall mode. Other important field of application of the
method would be computing or design of structures made of functionally graduated materials.
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