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Automatic knowledge base generation using techniques such as genetic algorithms tend to be highly
dependent on the quality and size of the learning data. First of all, large data sets can lead to unnecessary
time loss, when smaller data sets could describe the problem as well. Second of all, the presence of noise
and outliers can cause the learning algorithm to degenerate. Clustering techniques allow compressing
and filtering the data, thus making the generation of fuzzy knowledge bases faster and more accurate.
Different clustering algorithms are compared and the validation of the results through a theoretical 3D
surface, shows that when compressing the data to 5% of its original size, clustering algorithms accelerate
the learning process by up to 94%. Moreover, when the learning data contains noise and/or a large amount
of outliers, clustering algorithms can make the results more stable and improve the fitness of the obtained
FKBs.

1. INTRODUCTION

Machine learning applications such as Genetic Algorithms (GA) [7] allow automatic building of
knowledge bases on phenomena without any theoretical knowledge nor expert assistance, based
only on a set of learning data. The quality of the obtained knowledge bases is highly dependant on
that of the data set that is presented to the learning algorithm. Hence, learning data sets containing
a large amount of noise and/or outliers will result in a loss of fitness of the knowledge base, since the
learning algorithm will try to model the noise/outliers instead of the real phenomenon. Moreover,
lack of knowledge about the phenomenon often leads to “over-representation”, meaning collecting a
very large data set when a much smaller one would be sufficient. Such large data sets will inevitably
cause a considerable time loss which can be problematic for applications that need a fast an accurate
response.

This paper presents a study of the robustness in terms of Gaussian noise and outlier probability
of Real Binary-Like Coded Genetic Algorithm (RBCGA) used to generate Fuzzy Knowledge Bases
(FKB) and proposes a technique based on clustering algorithms to improve the fitness of the obtained
FKBs and reduce the time needed to perform the learning process. First, short presentations of the
Fuzzy Decision Support System (FDSS) and RBCGAs describe the main aspects and specificities
of these techniques and the software that was used. A description of the clustering techniques and
validation results follow in the next two sections.

2. Fuzzy DECISION SUPPORT SYSTEM

A rule-based approach to decision making using fuzzy logic techniques may consider imprecise vague
language as a set of rules linking a finite number of conclusions. The knowledge base of such systems
consists of two components: a linguistic terms base and a fuzzy rules base [3]. The former is divided
into two parts: the fuzzy premises (or inputs) and the fuzzy conclusions (or outputs).
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2.1. Theoretical specificities

In this paper we consider FKBs of N multiple inputs and one single output (MISO). Moreover,
we consider only general overlapping triangular fuzzy sets on the premises and sharp-symmetric
triangular fuzzy sets on the conclusion. The representation of such imprecise knowledge by means
of fuzzy linguistic terms makes it possible to carry out quantitative processing in the course of
inference that is used for handling uncertain (imprecise) knowledge. This is often called approximate
reasoning [21]. This knowledge, expressed by (k = 1, 2, ..., K) finite heuristic fuzzy rules of the
type MISO, may be written in the form:

R¥iso @ if 71 is XF and p is X¥ and ...and zy is X% then y is Yj, (1)

where {Xf}:il denote values of linguistic variables {mi}ilil (conditions) defined in the following

universe of discourse {Xi}ijil; and Y* stands for the value of the independent linguistic variable y
(conclusion) in the universe of discourse Y. The global relation aggregating all rules from k = 1 to
K is given as

= alsokK=1 (Rf,ﬂso) : . (2)

where the sentence connective also denotes any ¢ or s-norm (e.g., min (A) or max (A) operators) or

averages. For a given set of fuzzy inputs { X }f’ (or observations), the fuzzy output ¥’ (or conclusion)
may be expressed symbolically as:

V= (X{, X5 X)) o R, (3)

where o denotes a compositional rule of inference (CRI), e.g., the sup-A or sup-prod (sup-x). Alter-
natively, the CRI of Eq.(3) is easily computed as

Y'=Xyo..o(X50(X]oR)). (4)

The CRI mechanisms allow us to obtain different conclusions represented as the membership
function Y. In FDSS Fuzzy-Flou, there are three defuzzification methods: the centre of gravity
(COG); the mean of maxima (MOM); and the height method. All the results presented in this
paper are obtained using the X-sup*-*-* CRI (sum-prod) and COG as defuzzification.

2.2. FDSS Learning paradigm

In general, FDSS requires a knowledge base in order to support the decision-making process of
endusers. The FKB can be created manually by a human expert or automatically learned from a
set of sampled data. In this paper the automatic learning process of the FDSS knowledge base is
automatic. The learning process is aimed at producing knowledge bases that are manageable by
either a human expert or a computer. The FKBs must accurately reproduce the set of learned data,
while interpolating or extrapolating fair conclusions in other situations. A minimalist approach is
implemented through an automatic reduction of fuzzy rules and sets on the premises, whenever the
approximation error is not penalized too greatly by this reduction.

Figure 1 shows a screen printout of the FDSS Fuzzy-Flou software used as a validation tool for
the genetically generated FKBs. It was developed at Ecole Polytechnique de Montréal (Canada) and
the Silesian University of Technology (Poland). For more information on the Fuzzy-Flou software,
please refer to [3].
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Fig. 1. Graphic interface of the FDSS Fuzzy-Flou

3. AUTOMATIC GENERATION OF FKBs

GAs are powerful stochastic optimization techniques based on the analogy of the mechanics of
biological genetics and imitate the Darwinian survival of the fittest approach [7]. As shown in Fig. 2,
each individual of a population is a potential FDSS Fuzzy-Flou knowledge base. Figure 2 presents
the encoding/decoding scheme as well as the four basic operations, i.e.: reproduction, mutation,
evaluation and natural selection, of the developed GA learning software. The method uses iterative
improvement of individuals at each generation to converge toward multiple optima simultaneously.
When the number of unknown parameters increases, GA exhibits only a polynomial increase of
the complexity [6, 16], while the other optimization techniques show an exponential increase. The
RBCGA developed by the authors [1] is a combination of a real coded genetic algorithm (RCGA)
and a binary coded genetic algorithm (BCGA).

Population of Knowledge Bases.

Nesjcslcs

Fig. 2. Genetic learning paradigm
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3.1. Coding

The genotype of an FKB is the coding of its parameters into chromosomes and corresponds to
several independent sets of real numbers and a set of integers. The genotype contains the following
items:

e Input/Output Premises: A set of real numbers; for the sake of coding simplicity, we consider
only non-symmetrical-overlapping triangular fuzzy sets for premises and symmetrical triangular
fuzzy sets for the conclusion.

e Fuzzy Rules: A set of integer numbers; the genotype of fuzzy rules contains information about
all the possible combinations of connecting one fuzzy set on each premise to a fuzzy set on the
conclusion.

3.2. Multi-crossover mechanisms

The evolution of a population of FKBs at each generation is achieved by the reproduction of the
“best” individuals, based on their abilities to survive natural selection. Reproduction is performed
by crossover of the genotype of the parents to obtain the genotype of an offspring, using a multi-
crossover which is composed of a premises/conclusion crossover and a fuzzy rules crossover. These
mechanisms are governed by the initiating probability pc.

3.2.1. Premises/conclusion crossover

The mechanism used is called blending crossover o (BLX-a) [19], where o determines the exploita-
tion/exploration level of the offspring (see Fig. 3). The parameter « is set to 1.0 for the first third
of the generations (exploration) to 0.5 for the second third (relaxed exploitation) and finally to 0.1
for the last third of the evolution (exploitation). These changes in exploitation/exploration balance,
help avoiding premature convergence [2].

l Relaxed Exploitation !
* Exploration ! Exploitation ' Exploration }
[mini-la lxi I y;l maxﬁla!

Fig. 3. Blended crossover a (BLX-a)

3.2.2. Fuzzy rules crossover

Since the part of the genotype representing the fuzzy rule base is composed of integer numbers, the
crossover on this part of the genotype is done by a simple crossover. The operation is performed
by exchanging the end part of the sets (containing the fuzzy rules) of the parents at a randomly
selected crossover site, as shown in Fig. 4.
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Fig. 4. Simple crossover

3.3. Fuzzy set reducer

This mechanism is set to reduce the complexity of the FKBs by selecting a summit on each premise
and erasing it from the respective sets together with the corresponding fuzzy rules. This mechanism
is governed by the initiating probability p;.

3.4. Mutation

Mutation is a random alteration of a new member’s genotype in the population. Mutation makes
it possible to seek completely new solutions without any control on the direction, as opposed to
gradient-based optimization techniques. The probability pn,, governs the occurrence of this mecha-
nism. In this paper, uniform mutation [11], similar to BLX-a with o = 0, is applied.

3.5. Natural selection

Natural selection is performed on the population by keeping the “most promising” individuals, based
on their fitness. The first generation begins with P FKBs and the same number is generated by
crossover and mutation. To keep the population constant, we apply natural selection on the 2P
FKBs by ordering them according to the performance criterion and keeping the P first FKBs. In
this paper the population size is set to 100 and the number of generations is set to 500.

3.6. Performance criterion of the RBCGA

The performance criterion allows one to compute the rating of each FKB. This performance rating
is used by the RBCGA in order to perform the natural selection. Here, the performance criterion is
the accuracy level of a FKB (approximation error) in reproducing the outputs of the learning data.
The approximation error Ay is measured using the rms error method:

N
Arms . z (RBCGAoutput S dataoutPUt)Z, (5)

N

t=1

where, N represents the size of the learning data. The fitness value is evaluated as a percentage of
L, the output length base of the conclusion, i.e.,

L ot Arms

¢rms = L

x 100. (6)
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4. CLUSTERING

“Clustering consists of partitioning a data set into subsets (clusters), so that the data in each
subset (ideally) share some common trait — often similarity or proximity for some defined distance
measure” [20]. Among all the various clustering techniques, the three most popular were selected:
one hierarchical method, AGglomerative NESting (AGNES) [13], and two partitioning methods
(K-Means [17] and K-Medoids [13]).

4.1. The hierarchical algorithm

Since most of the hierarchical methods are relatively time consuming, only the simplest one, AGNES,
has been tested. It starts with each object in its own cluster and merges the clusters closest to each
other, thus creating larger clusters. A step by step description of the algorithm follows.

e Place each object in its own cluster;

e Calculate the distances between each pair of clusters;

e Merge the pair of clusters with the smallest distance;

e Repeat steps 2 and 3 until the desired number of clusters is attained.

The AGNES algorithm is deterministic. Its execution time depends only on the size of the data
and the number of clusters desired. It does not depend on the way the data is ordered. On the other
hand, it suffers from several handicaps, mostly due to its rigidity. The most important one is the
fact that once two clusters are combined, that combination cannot be undone. Clusters cannot be
separated and objects cannot be swapped between clusters. This isn’t the case of the partitioning
algorithms.

4.2. The partitioning algorithms

The partitioning algorithms start with an arbitrary distribution in the desired number of clusters
and then examine its neighbourhood (similar distributions with one object swapped between two
clusters). The Best Possible (BP) versions search for the best similar distribution whereas the First
Better (FB) versions perform the swap as soon as a better one is found. Finally, the algorithms
stop when the distribution is better than its entire neighbourhood. The two partitioning methods,
K-Means and K-Medoids, differ only by the central measure of the clusters. Their step by step
description is as follows:

e Create as many clusters as needed;
e Place about as many objects in each cluster;
e Compute the centroids/medoids of each cluster;

e For each object search for clusters with centroids/medoids closer to the object than its actual
cluster’s centroid/medoid;

e_Perform the swap when;
o the closest cluster is found (BP);

o a closer cluster is found (FB);
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e Stop when each object’s distance to its own cluster is minimum.

The algorithm converges towards near-optimal solutions, meaning that it does not necessarily
find the global optimum of the chosen objective function, i.e. minimum sum of distances from the
objects to their respective cluster centres. In all of its variations, the algorithms only find a local
optimum.

4.3. Central measure

In the case of the partitioning methods two different central measures were tested, medoids and
means. The medoids require more heavy computations than the means but they also offer a strongly
improved robustness against outliers, since, contrarily to the mean, the distance of an outlier to the
rest of the objects has no effect on the value of the medoid.

4.4. Distance/similarity functions

All of the algorithms have been tested with the Euclidean distance function in order to evaluate the
similarity between two objects or clusters. In order not to “penalize” variables with small variances,
values for each variable can be normalized with mean equal to 0 and variance equal to 1. Also, a
much simpler technique is to normalize within the range from 0 to 1. Nevertheless, this approach is
very sensitive to outliers.

Other distance functions such as Minkowski [9], Canberra [18] and Harmonically Summed [12]
have been implemented but they showed no serious improvement in the obtained results. Also the
correlation ranks such as Pearson’s [15] and Kendall’s [14] have been implemented. They offer a
much improved robustness against outliers but the necessity of computing the correlations at each
step represents a very important time cost.

4.5. Optimal number of clusters

The Calinski-Harabash pseudo-F (CHpF) [5] (see Eq. (7)) statistic has been implemented and can
be used to obtain an estimate of the optimal number of clusters for each individual distribution.

SST — SSE
CHpF = ——]ffl— o)
n—=k

where: n is the number of objects, k is the number of clusters, SST is the sum of squared distances
from the clusters centroids to the overall data centroid, SSE is the sum of squared distances from
the objects to their respective clusters’ centroids.

One way to obtain the optimal number of clusters is to run a hierarchical algorithm and compute
the CHpF statistic at each step. Once the optimal CHpF statistic is obtained, a partitioning method
can be run to optimize the distribution at the appropriate level in the hierarchy.

In the tests described in the following section this technique has not been used systematically,
since it would have been necessary to perform it for each individual data set and the time required
to perform the necessary operations would have been too important. It was only used to roughly
estimate a global compromise between the compression ratio and the optimal number of clusters
for all the data sets.
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5. VALIDATION RESULTS

Three different sets of tests have been performed. The first one only shows the time reduction when
either one of the three algorithms are used. The second one shows the robustness of the GAs and
clustering algorithms in terms of noise and the third one in terms of outliers. In all of these tests a
theoretical 3D surface has been used (see Eq. (8)).

f(z,y) = 3%y —°. (8)
For the purpose of the studies presented in this section a clustering module was developed by the

authors and used to obtain all the results. Figure 5 shows a screen printout of the aforementioned
module.

Clustering Options

0.140146
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Entry 7
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Entry 192

Fig. 5. Graphic interface of the clustering module

Numerous data sets with variable Gaussian noise and outlier probabilities have been generated
randomly. Outliers have been generated by replacing a random object with a random value in the
interval of two times the total range of the data set. Data sets for each parameter combination have
been generated ten times and the clustering and learning processes have been run separately. The
final results presented in this paper are means (u) of each set of ten runs. Standard deviations (o)
are also included in the tables to show the stability (or the lack of it) of the different algorithms.

The size of the initial data sets was chosen in order to obtain reasonably pronounced execution
times. Data sets of 1000 objects gave palpable results. As for the size of the compressed data
sets, it was set to 50 (see Sec. 4.5). The performance of each FKB is obtained by the method
described in section 3.6 except that the datacutput in Eq. (5) is replaced by the actual theoretical
values consisting of a uniformly distributed set of 1000 points. Figures 6 and 7 present 3D and
grayscale map representations of the theoretical data set and of the data set obtained for Gaussian
noise with 0.1 standard deviation and 20% of outlier probability. The outliers in Fig. 7 have been
isolated from the rest of the learning data and represented as crosses in order to highlight their
large quantity.
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It is noteworthy that:
e the RBCGAs have been run with p. = 0.92, p, = 0.08 and p,, = 0.02 (see Secs. 3.2, 3.3 and 3.4);

e the tests have been performed on a Pentium IV 3.00 GHz PC.

Fig. 6. a) Theoretical surface in 3D form, b) theoretical surface in grayscale map form
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Fig. 7. Surface obtained with Gaussian noise with 0.1 standard deviation and 20% of outlier probability
5.1. Time reduction

Figure 8 shows the time necessary to perform the learning process with and without the aid of the
clustering algorithms.
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Fig. 8. Time reduction of the learning process with the use of clustering algorithms

The black parts of the columns represent the time needed to perform the RBCGAs, whereas
the white parts represent the time needed to perform the clustering processes. For example, in the
case of the KMeans algorithm a 94% time gain is obtained. The other algorithms offer time gains
of 47% (AGNES), 75% (K-Medoids FB) and 91% (K-Medoids BP). The longer execution time for
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the FB version over the BP version of the K-Medoids algorithm is explained by the fact that more
exploration steps must be performed in order to achieve the final distribution. The results presented
in the rest of the paper are obtained with the FB version which in most of the cases gave slightly
better results.

5.2. Noise influence

Tests on various noise levels have shown that the RBCGAs are very robust and stable. Even tests
with very noisy data with standard deviation equal to double of the original data range lead to
over 90% fitness of the obtained FKBs. No clustering algorithms tested in this study gave a global
improvement on the final fitness. Figure 9 and Table 1 show the results for a theoretical data set as
well as for data sets with three different levels of Gaussian noise.
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Fig. 9. Fitness of automatically generated FKBs with and without the use of clustering algorithms under
different amount of noise

Results in Table 1 show that in case of noisy data, although the K-Medoids algorithm does not
always give the best results fitness-wise, it is the most stable one. When the standard deviation of
Gaussian noise is larger than 0.4, data sets pre-processed with this algorithm give slightly less fit
but more stable results than those obtained with no clustering pre-processing.

Table 1. Fitness of automatically generated FKBs with and without the use of clustering algorithms under
different amount of noise

o of Gaussian noise 0.0 0.2 0.4 0.6
Fitness m o uw o m o W o
No Clustering 97.39 | 0.31 | 97.67 | 0.63 | 95.31 | 1.30 | 96.71 | 1.46
AGNES 93.92 | 2.88 | 95.15 | 1.76 | 93.55 | 2.32 | 94.25 | 3.01
K-Means 94.97 | 1.99 | 92.51 | 5.05 | 95.32 | 2.17 | 92.47 | 3.75
K-Medoids 93.83 | 1.72 | 94.05 | 1.17 | 95.36 | 1.31 | 94.97 | 0.81

It is noteworthy that the standard deviations for a given parameter combination are influenced
not by the lack of consistency of the genetic algorithms but by the fact that each data set is composed
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of different data samples. Several tests on the same data set actually give close to zero standard
deviation on the obtained fitnesses.

5.3. Outliers influence

At Sec. 5.2 it has been shown that the clustering algorithms offer hardly any improvement on the
fitness of the obtained FKBs in the case of noisy data. However, in the case of outlier probabilities,
the K-Medoids algorithm allows the RBCGA to produce FKBs with approximately 95% fitness for
data sets with between 10% and 15% of outlier probabilities. In order to “absorb” the outliers in
clusters containing other objects, a minimum number of objects per cluster can be forced in the
case of the partitioning algorithms. This avoids outliers forming individual clusters but also makes
the algorithm more constrained. Figure 10 and Table 2 present the fitnesses of FKBs obtained from
data sets containing various amounts of outliers and 0.1 standard deviation Gaussian noise.
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Fig. 10. Fitness of automatically generated FKBs with and without the use of clustering algorithms under
different amount of outliers

Table 2. Fitness of automatically generated FKBs with and without the use of clustering algorithms under
different amount of outliers

Outliers 0% 10% 20% 30%
Fitness i o I o 7 o m o
No Clustering | 96.78 | 0.82 | 92.48 | 1.46 | 91.80 | 0.69 | 88.56 | 1.68
AGNES 90.35 | 8.21 | 57.67 | 3.60 | 41.40 | 20.26 | 42.69 | 10.34
K-Means 94.40 | 2.67 | 90.32 | 4.78 | 86.45 | 2.95 | 79.30 | 4.72
K-Medoids | 96.59 | 0.66 | 94.88 | 1.11 | 92.60 | 0.65 | 81.07 | 6.25

Several conclusions can be drawn from Fig. 10 and Table 2:

e without any clustering pre-processing, the fitness declines proportionally to the amount of out-
liers. It falls below 90% for data sets with between 20% and 30% outlier probabilities;
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e the fitness of the FKBs for data sets with up to 20% outlier probability pre-processed with the
K-Medoids algorithm is improved by 2.4% for 10% of outliers and by 0.8% for 20% of outliers.
It declines abruptly when more than 20% of outliers are present in the learning data, because
the algorithm starts forming clusters around outliers exclusively, thus increasing their relative
importance;

o until the aforementioned breakdown point of 20% of outliers, the K-Medoids algorithm also gives
the most stable results;

e the K-Means algorithm leads to a considerable fitness loss but with a regular behaviour;

e the AGNES algorithm is totally unstable and inapplicable for data sets containing outliers (the
columns are not visible in Fig. 10, because the fitness of the generated FKBs falls under 70%);

e for data sets containing over 20% of outliers, the RBCGA alone give the best and the most
stable results. For such extreme cases, other filtering techniques should be used to pre-process
the data.

Figures 11 and 12 show grayscale map representations of the surfaces generated from the FKBs
obtained from a 0.1 standard deviation Gaussian noise and 20% outlier probability data set, with
(Fig. 12) and without (Fig. 11) clustering pre-processing. The clustering algorithm used to produce
the results illustrated in Fig. 12 is the K-Medoids algorithm.
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Fig. 11. Surface generated from the FKB obtained without clustering pre-processing from a data set with
Gaussian noise with 0.1 standard deviation and 20% of outlier probability

The fitness of the FKB illustrated in Fig. 12 is 1% stronger than that of the FKB illustrated on
Fig. 11. These figures can also be compared with Fig. 6 b) in order to see how Fig. 12 approaches
the theoretical results more accurately.



220 A. Przybylo, S. Achiche, M. Balazinski, L. Baron

0 0.1 0.2 0.3 04 05. .06 07 08 09 1
X

Fig. 12. Surface generated from the FKB obtained with clustering pre-processing from a data set with
Gaussian noise with 0.1 standard deviation and 20% of outlier probability

6. CONCLUSION

This paper aims to highlight the advantages of clustering pre-processing for the improvement of
automatic generation of FKBs using a GA. It has been shown that initial clustering can significantly
reduce the time needed to complete the learning process, which can be of a very high interest
in factory floor applications and on-line/real-time learning. The tests that have been performed
show that, when compressing the data to 5% of its original size, clustering algorithms allow to
accelerate the learning process by 75% and 94% respectively in the case of the K-Medoids and K-
Means algorithms with only minimal loss on the fitness of the obtained FKBs. Moreover, when the
learning data contains a large amount of outliers, the K-Medoids algorithm can improve the fitness
of the obtained FKBs for data sets containing as much as 20% of outliers. Finally, the K-Medoids
algorithm can also make the results more stable in the case of very noisy data sets.
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