Probabilistic multiscale analysis of inelastic localized failure in solid mechanics

  • Adnan Ibrahimbegovic Ecole Normale Superieure, Cachan
  • Hermann G. Matthies TU Braunschweig, Braunschweig

Abstract

In this work, we discuss the role of probability in providing the most appropriate multiscale based uncertainty quantification for the inelastic nonlinear response of heterogeneous materials undergoing localized failure. Two alternative approaches are discussed: i) the uncertainty quantification in terms of constructing the localized failure models with random field as parameters of failure criterion, ii) the uncertainty quantification in terms of the corresponding Bayesian updates of the corresponding evolution equation. The detailed developments are presented for the model problem of cement-based composites, with a two- phase meso-scale representation of material microstructure, where the uncertainty stems from the random geometric arrangement of each phase. Several main ingredients of the proposed approaches are discussed in detail, including microstructure approximation with a structured mesh, random field KLE representation, and Bayesian update construction. We show that the first approach is more suitable for the general case where the loading program is not known and the best one could do is to quantify the randomness of the general failure criteria, whereas the second approach is more suitable for the case where the loading program is prescribed and one can quantify the corresponding deviations. More importantly, we also show that models of this kind can provide a more realistic prediction of localized failure phenomena including the probability based interpretation of the size effect, with failure states placed anywhere in-between the two classical bounds defined by continuum damage mechanics and linear fracture mechanics.

Keywords

multiscale analysis, inelastic behavior, uncertainty quantification, fracture, size-effect,

References

[1] A. Abdulle, A. Nonnenmacher. A short and versatile finite element multiscale code for homogenization problems. Comput. Meth. Appl. Mech. Engrg., 198: 2839–2859, 2009.
[2] K.-J. Bathe. Finite Element Procedures. Prentice Hall, 1996.
[3] Z.P. Bažant. Probability distribution of energetic-statistical size effect in quasibrittle fracture. Prob. Eng. Mech., 19: 307–319, 2004.
[4] Z.P. Bažant, L. Cedolin. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press, 1991.
[5] H. Ben Dhia. Multiscale mechanics problems: Arlequin method. Comptes Rendus Academie Siences, 326: 899–904, 1998.
[6] H. Ben Dhia, G. Rateau. The Arlequin method as a flexible engineering design tool. Int. J. Numer. Meth. Engng., 62: 1442–1462, 2005.
[7] M. Bornert, T. Bretheau, P. Gilormini. Homogization in mechanics of materials. Hermes-Science, Paris, 2001 (in French).
[8] C.A. Caflisch. Monte Carlo and quasi-Monte Carlo Methods. Acta Numerica, 7: 1–49, 1998.
[9] D. Brancherie, A. Ibrahimbegovic. Novel anisotropic continuum-damage model representing localized failure. Part I: Theoretical formulation and numerical implementation. Engineering Computations, 26(1–2): 100–127, 2009.
[10] A. Carpenteri. On the mechanics of quasi-brittle materials with a fractal microstructure. Eng. Frac. Mech., 70: 2321–2349, 2003.
[11] J.B. Colliat, M. Hautefeuille, A. Ibrahimbegovic, H. Matthies, Stochastic Approach to quasi-brittle failure and size effect, Comptes Rend. Académie Science: Mech. (CRAS), 335: 430–435, 2007.
[12] , S. Dolarevic, A. Ibrahimbegovic. A modified three-surface elasto-plastic cap model and its numerical implementation. Computers and Structures, 85: 419–430, 2007.
[13] W. E, B. Engquist. The heterogeneous multiscale methods. Comm. Math. Sci., vol. 1, pp. 87–133, 2003; preprint as: arXiv:physics/0205048v2 [physics.comp-ph], 2002.
[14] F. Feyel. Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput. Mat. Sci., 16: 344–354, 1999.
[15] F. Feyel, J.-L. Chaboche. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials, Comput. Meth. Appl. Mech. Engrg., 183: 309–330, 2000.
[16] P. Gilormini. A shortcoming of the classical non-linear extension of the self-consistent model. Comptes Rend. Académie Science, 320(116): 115–122, 1995.
[17] M. Hautefeuille, S. Melnyk, J.-B. Colliat, A. Ibrahimbegovic. Failure model for heterogeneous structures using structured meshes and accounting for probability aspects. Engineering Computations, 26(1–2): 166–184, 2009.
[18] M. Hautefeuille, J.-B. Colliat, A. Ibrahimbegović, H.G. Matthies. Multiscale Zoom Capabilities for Damage
Assessment in Structures, in: Damage Assessment and Reconstruction after Natural Desasters and Previous
Military Activities. A. Ibrahimbegovic and M. Zlatar [Eds.], NATO-ARW series, Springer, 2008.
[19] M. Hautefeuille, J.-B. Colliat. A. Ibrahimbegović, H.G. Matthies, P. Villon, A multi-scale approach to model localized failure with softening. Computers and Structures, 94–95: 83–95, 2012.
[20] A. Hillerborg, M. Modéer, P.E. Petersson. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6: 773–782, 1978.
[21] A. Ibrahimbegovic. Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods. Springer, Berlin, 2009.
[22] A. Ibrahimbegovic, D. Brancherie. Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comp. Mechanics, 31: 88–100, 2003.
[23] A. Ibrahimbegovic, D. Markovic. Strong coupling methods in multiphase and multiscale modeling of inelastic behavior of heterogeneous structures. Comp. Meth. Appl. Mech. Eng., 192: 3089–3107, 2003.
[24] A. Ibrahimbegovic, S. Melnyk. Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method. Comp. Mechanics, 40: 149–155, 2007.
[25] A. Ibrahimbegovic, E.L. Wilson. A modified method of incompatible modes. Communications in Applied Numerical Methods, 7: 187–194, 1991.
[26] E.T. Jaynes. Probability Theory: the logic of science. Cambridge University Press, 2003.
[27] M. Jiang, M. Ostoja-Starzewski, I. Jasiuk. Scale-dependent bounds on effective elastoplastic response random composites. J. Mech. Phys. Solids, 49: 655–673, 2001.
[28] M. Jiang, I. Jasiuk, M. Ostoja-Starzewski. Apparent elastic and elastoplastic behaviour of periodic composites. Int. J. Solids Struct., 39: 199–212, 2002.
[29] C. Kassiotis, M. Hautefeuille. coFeap’s Manual. LMT-Cachan Internal Report, 2: 2008.
[30] T. Kanit, S. Forest, I. Galliet, V. Mounoury, D. Jeulin. Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solid Struct., 40: 3647–3679, 2003.
[31] M.G. Kendall. On The Reconciliation Of Theories Of Probability. Biometrika, 36: 101–116, 1949.
[32] M. Kleiber, H. Antunez, T.D. Hien, P. Kowalczyk. Parameter Sensitivity in Nonlinear Mechanics. Wiley, 1997.
[33] M. Krosche, R. Niekamp, H.G. Matthies. PLATON: A Problem Solving Environment for computational Steering of Evolutionary Optimisation on the Grid, in: Proc. Int. Conf. on Evolutionary Methods for Design, Optimisation, and Control with Application to Industrial Problems (EUROGEN 2003). G. Bugeda, J.A. Désidéri, J. Periaux, M. Schoenauer and G. Winter [Eds.], CIMNE, 2003.
[34] M. Krosche, H.G. Matthies. Component-Based Software Realisations of Monte Carlo and Stochastic Galerkin Methods. Proc. Appl. Math. and Mech. (PAMM), 8: 10765–10766, 2008.
[35] A. Kucerova, D. Brancherie, A. Ibrahimbegovic, J. Zeman, Z. Bitnar. Novel anisotropic continuum-damage model representing localized failure. Part II: Identification from tests under heterogeneous test fields. Engineering Computations, 26(1–2): 128–144, 2009.
[36] P.-S. Koutsourelakis, E. Bilionis. Scalable Bayesian reduced-order models for high-dimensional multiscale dynamical systems. arXiv: 1001.2753v2 [stat.ML], 2010.
[37] P. Ladeveze, O. Loiseau, D. Dureisseix. A micro-macro and parallel computational strategy for highly heterogeneous structures. Int. J. Numer. Meth. Eng., 52: 121–138, 2001.
[38] P. Ladevèze, A. Nouy. On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput. Meth. Appl. Mech. Engrg., 192: 3061–3087, 2003.
[39] J. Lemaître, J.L. Chaboche. Mechanics of Solid Materials. Dunod, Paris, 1988 (in French).
[40] M. Loève. Probability Theory – Fourth Edition. 1: 1977.
[41] J. Lubliner. Plasticity Theory. Macmillan, New York, NY, 1990.
[42] D. Markovic, A. Ibrahimbegovic. On micro-macro interface conditions for micro-scale based fem for inelastic behavior of heterogeneous material. Comput. Meth. Appl. Mech. Engrg., 193: 5503–5523, 2004.
[43] D. Markovič. R. Niekamp, A. Ibrahimbegovic, H.G. Matthies, R.L. Taylor. Multi-scale modelling of heterogeneous structures with inelastic constitutive behaviour: Part I – Physical and mathematical aspects, Engineering Computations, 22: 664–683, 2005.
[44] H.G. Matthies. Computation of constitutive response, in: Nonlinear Computational Mechanics – State of the Art. P. Wriggers and W. Wagner [Eds.], Springer, 1991.
[45] H.G. Matthies, R. Niekamp, J. Steindorf. Algorithms for strong coupling procedures. Comput. Meth. Appl. Mech. Engrg., 195(17–18): 2028–2049, 2006.
[46] H.G. Matthies. Quantifying uncertainty: modern computational representation of probability and applications, in: Extreme Man-Made and Natural Hazards in Dynamic of Strucutres, A. Ibrahimbegovic and I. Kozar [Eds.], 2007.
[47] H.G. Matthies. Stochastic Finite Elements: Computational Approaches to Stochastic Partial Differential Equations. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 88: 849–873, 2008.
[48] H.G. Matthies, B. Rosić. Inelastic Media under Uncertainty: Stochastic Models and Computational Approaches, in: IUTAM Symposium on Theoretical, Computational, and Modelling Aspects of Inelastic Media. B.D. Reddy [Ed.], IUTAM Bookseries. Springer, 2008.
[49] C. Miehe, A. Koch. Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch. Appl. Mech., 72: 300–317, 2002.
[50] R. Niekamp, H.G. Matthies. CTL: a C++ Communication Template Library. GAMM Jahreshauptversammlung in Dresden, 21–27 March 2004.
[51] R. Niekamp, D. Markovič, A. Ibrahimbegovic, H.G. Matthies, R.L. Taylor. Multi-scale modelling of heterogeneous structures with inelastic constitutive behaviour: Part II – Software coupling implementation aspects. Engineering computations, 26: 6–28, 2009.
[52] M. Ostoja-Starzewski. Material spatial randomness: from statistical to representative volume element. Probabilistic Engineering Mechanics, 21: 112–132, 2006.
[53] K.C. Park, C.A. Felippa. A variational principle for the formulation of partitioned structural systems. Int. J. Numer. Meth. Engng., 47: 395–418, 2000.
[54] K.C. Park, C.A. Felippa, G. Rebel. A simple algorithm for localized construction of non-matching structural interfaces. Int. J. Numer. Meth. Engng., 53: 2117–2142, 2002.
[55] T.H.H. Pian, K. Sumihara. Rational approach for assumed stress finite elements. Int. J. Numer. Meth. Engng., 20: 1638–1685, 1984.
[56] G. Pijaudier-Cabot, Z.P. Bažant. Nonlocal Damage theory. J. Eng. Mech., 113: 1512–1533, 1987.
[57] B. Rosić, H.G. Matthies. Computational Approaches to Inelastic Media with Uncertain Parameters. J. Serbian Soc. Computational Mech., 2: 28–43, 2008.
[58] B. Rosić, H.G. Matthies, M. Živković, A. Ibrahimbegovic. Formulation and Computational Application of Inelastic Media with Uncertain Parameters, in: Proceedings of the Xth Conference on Computational Plasticity (COMPLAS). E. Oñate, D.R.J. Owen and B. Suárez [Eds.], CIMNE, 2009.
[59] B. Rosić, H.G. Matthies. Plasticity described by uncertain parameters – a variational inequality approach, in: Proceedings of the XIth Conference on Computational Plasticity (COMPLAS). E. Oñate, D.R.J. Owen, D. Perić and B. Suárez [Eds.], pp. 385–395, CIMNE, 2011.
[60] B.V. Rosić, H.G. Matthies. Stochastic Galerkin Method for the Elastoplasticity Problem, in: Recent Developments and Innovative Applications in Computational Mechanics. D. Müller-Hoppe, S. Löhr and Stephanie Reese [Eds.], pp. 303–310, Springer, 2011.
[61] B.V. Rosić, A. Kučerová, J. Sýkora, O. Pajonk, A. Litvinenko, H.G. Matthies. Parameter Identification in a Probabilistic Setting. arXiv: 1201.4049v1 [cs.NA], 2011.
[62] B.V. Rosić, A. Litvinenko, O. Pajonk, H.G. Matthies. Sampling-free linear Bayesian update of polynomial chaos representations. J. Comp. Phys., 231: 5761–5787, 2012.
[63] K. Sab, I. Lalaai. Unified approach to size effect of quasi-brittle materials. Comptes Rendus Academie Siences, 316: 9, 1187–1192, 1993 (in French).
[64] E. Sanchez-Palencia. Introduction to asymptotic methods and homogenization. Application to continuum mechanics. Hermes, 1992 (in French).
[65] C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27: 379–423 and 623–656, 1948.
[66] J.C. Simo, J. Oliver, F. Armero. An analysis of strong discontinuity induced by strain softening solution in rate independent solids. Comp. Mechanics, 12: 277–296, 1993.
[67] J.C. Simo, R.L. Taylor. Consistent tangent operators for rate-independent elastoplasticity. Comput. Meth. Appl. Mech. Engrg., 48: 101–118, 1985.
[68] S.A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of function. Soviet Mathematics Dokl., 4: 240–243, 1963.
[69] C. Soize. Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am., 109(5): 1979–1996, 2001.
[70] I. Temizer, T.I. Zohdi. A numerical method for homogenization in non-linear elasticity. Comput. Mech., 40: 281–298, 2007.
[71] I. Temizer, P. Wriggers. On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput. Meth. Appl. Mech. Engrg., 198: 495–510, 2008.
[72] I. Temizer, P. Wriggers. An adaptive multiscale resolution strategy for the finite deformation analysis of micro-heterogeneous structures. Comput. Meth. Appl. Mech. Engrg., 200: 2639–2661, 2011.
[73] W. Weibull. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech., 293–297, 1951.
[74] E.L. Wilson, R.L. Taylor, W.P. Doherty, J. Ghaboussi. Incompatible displacement models. Numerical and Computer Methods in Structural Mechanics, 43–57, Academic Press, New York, 1973.
[75] E.L. Wilson. The static condensation algorithm. Int. J. Num. Meth. Eng., 8: 199–203, 1974.
[76] I.O. Yaman, N. Hearn, H.M. Aktan. Active and non-active porosity in concrete. Part I: Experimental evidence. Materials and Structures, 15: 102–109, 2002.
[77] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, 6th edition, Volumes 1 and 2, Elsevier, Oxford, 2005.
[78] T.I. Zohdi, P. Wriggers, C. Huet. A method of substructuring large-scale computational micromechanical problems. Comput. Meth. Appl. Mech. Engrg., 190: 563956, 2001.
[79] T.I. Zohdi, P. Wriggers. Introduction to Computational Micromechanics. Springer, 2005.
Published
Jan 25, 2017
How to Cite
IBRAHIMBEGOVIC, Adnan; MATTHIES, Hermann G.. Probabilistic multiscale analysis of inelastic localized failure in solid mechanics. Computer Assisted Methods in Engineering and Science, [S.l.], v. 19, n. 3, p. 277-304, jan. 2017. ISSN 2956-5839. Available at: <https://cames-old.ippt.pan.pl/index.php/cames/article/view/94>. Date accessed: 26 apr. 2025. doi: http://dx.doi.org/10.24423/cames.94.
Section
Articles